Abstract:
PURPOSE: An apparatus for manufacturing membrane-electrode is provided to effectively solve a connection failure of a subgasket and a 3-layer membrane electrode assembly and a wrinkle generation of the membrane-electrode assembly due to a thickness of a catalyst electrode layer. CONSTITUTION: An apparatus for manufacturing membrane-electrode, which produces a 5-layer membrane-electrode assembly by attaching a subgasket on both sides of a 3-layer membrane electrode assembly, comprises two press rollers in a roll press device which attaching the 3-layer membrane-electrode assembly and the subgasket by passing the same with a laminated state. One of the two press rollers consists of an elastic material press roller capable of absorbing a stepped region while the stepped region is compressed when contacted with the stepped portion in an attaching object. The elastic material press roller is a coating roller which is formed by laminating and integrating an outer circumference part consisting of elastic material on an outer circumference of a metal part. [Reference numerals] (AA) Blanking; (BB) Cutting line; (CC) Blanking; (DD) 5-layer MEA finished product
Abstract:
PURPOSE: A manufacturing method of membrane electrode assembly is provided to mass produce fuel cell stacks and to manufacture a 7- layer membrane electrode assembly by bonding gas diffusion layers on sub-gaskets by using primer layers after hot pressing. CONSTITUTION: A manufacturing method of membrane electrode assembly comprises the following steps: a step of manufacturing a 3- layer membrane electrode assembly(3) which catalyst electrode layers(2) are formed on both sides of a polymer electrolyte membrane(1); a step of manufacturing sub gaskets on which primer layers are formed; a step of manufacturing a 5- layer membrane electrode assembly(5) by bonding and fixing the sub gaskets on both sides of the 3- layer membrane electrode assembly; a step of laminating gas diffusion layers on primer layers on both sides of the 5- layer membrane electrode assembly; and a step of manufacturing a 7- layer membrane electrode assembly(7) by bonding the sub gaskets and gas diffusion layers using primer layers through hot pressing.
Abstract:
PURPOSE: A manufacturing method of an electrode for a fuel cell is provided to continuously maintain a catalyst layer and a porous structure for operation of a fuel cell, to be able to manufacture a pore structure with various sizes and distributions, and to facilitate control of the catalyst layer and the porous structure. CONSTITUTION: A manufacturing method of a Catalyst layer-combined electrode for a polymer electrolyte membrane fuel cell comprises: a step of providing plate-like porous metal foam(2,2a,2b) or a metal aerogel having a porous structure of nanometer or micron size; a step of manufacturing a catalyst layer-integrated electrode by fixing a catalyst to the metal foam or metal aerogel. The manufacturing method additionally comprises a step of impregnating an ion-conducting material into the catalyst layer-integrated electrode. [Reference numerals] (AA,EE) Gas; (BB,FF) Liquid; (CC) Large pores; (DD) Small pores; (GG,JJ) Electron; (HH, II) Ion
Abstract:
PURPOSE: A producing method of a cubic platinum-cobalt nano alloy catalyst is provided to secure the excellent activity by preventing the shape change by the clogging of nanoparticles. CONSTITUTION: A producing method of a cubic platinum-cobalt nano alloy catalyst comprises the following steps: dissolving a platinum precursor, a cobalt precursor, a surface stabilizer, and a reducing agent in a solvent; increasing the temperature of the obtained solution in the inert gas atmosphere; maintaining the temperature of the solution for obtaining a cubic platinum-cobalt nano alloy; and attaching the cubic platinum-cobalt nano alloy to a carbon supporter, and removing the surface stabilizer from the obtained catalyst.
Abstract:
PURPOSE: A producing method of a transition metal nanoparticle catalyst dipped in carbon is provided to simply produce nanoparticles with the small particle size, and to apply the catalyst to electrode materials of a fuel cell. CONSTITUTION: A producing method of a transition metal nanoparticle catalyst dipped in carbon comprises the following steps: dissolving a stabilizer in ethanol, for obtaining a mixed solution; inserting carriers into the mixed solution, and stirring for obtaining a dispersed solution; dissolving a transition metal precursor to the ethanol for obtaining a precursor solution; mixing the precursor solution with the dispersed solution for obtaining a dispersed precursor solution; reducing the dispersed precursor solution for obtaining nanoparticles; and drying the nanoparticles for obtaining powder.
Abstract:
PURPOSE: A method and an apparatus for manufacturing a catalyst slurry for a fuel cell are provided to increase catalyst availability and to improve the dispersibility of a dispersion of a catalyst particle and the mobility of a catalyst slurry. CONSTITUTION: A method for manufacturing a catalyst slurry for a fuel cell comprises the steps of: putting a solvent, an ionomer, and catalyst particles inside a reactor and dispersing the catalyst particles through an ultrasonic wave and a high speed mixing process; penetrating and adsorbing ionomers in micro pores existing in the catalyst particles by maintaining the inside pressure of a reactor in a vacuum state; removing generated microbubbles; and filtering catalyst particles larger than a standard particle size.
Abstract:
The present invention relates to a polymer electrolyte membrane chemically bonded with ionic liquid and a fuel cell using the same. More particularly, the present invention produces a polymer electrolyte membrane chemically bonded with an ionic liquid by a chemical reaction of the ionic liquid with a novel poly (styrene-block-2- histamine methyl acrylate) block copolymer, and thus has a high hydrogen ionic conductivity, even in a high-temperature and anhydrous environment; displays excellent electro-chemical and thermal stability; and ionic liquid capable of being applied to a high-temperature and dry-out bio fuel cell is chemically bonded to the present invention using the described-above.
Abstract:
PURPOSE: A block copolymer is provided to have excellent battery performance even under low humidify condition when uses as a fuel cell electrolyte membrane, to have excellent mechanical, chemical and thermal stability, and to improve adhesion with a catalyst layer. CONSTITUTION: A block copolymer comprises a repeating unit indicated in chemical formula 1. In chemical formula 1, Y is a single bond, -S-, -O- or -S(=O)2-, Z is a cation exchange group or a metal salt group selected from a sulfonic acid group, a phosphoric acid, a carboxylic acid, a sulfoneimide, and C1-10 alkylsulfonic acid, each of Ar1 and Ar2 is a divalent or trivalent C5-24 arylene group or a divalent or trivalent C5-24 heteroarylene, Ar3 is selected from C6-24 arylene group or C2-10 alkylene group which has a two or more fluorine substituent, each of A and B is an integer from 3-400, and z is an integer from 1-4.