Abstract:
Systems and methods for monitoring the status of air filters are provided. One or more thermoelectric sensors are provided to have an upstream sensing surface positioned adjacent the inlet surface of the air filter, and a downstream sensing surface positioned adjacent the outlet surface of the air filter. Sensing circuitry are connected to the thermoelectric sensors, configured to receive signals from the thermoelectric sensors and process the signals to obtain status information of the air filter.
Abstract:
At least some aspects of the present disclosure direct to a flexible thermoelectric module. The thermoelectric module includes a flexible substrate, a plurality of p-type thermoelectric elements and a plurality of n-type thermoelectric elements, a first set of connectors, and a second set of connectors. The substrate includes a plurality of vias filled with an electrically conductive material or thermoelectric elements. In some cases, the plurality of p-type thermoelectric elements and the plurality of n-type thermoelectric elements are disposed on the flexible substrate.
Abstract:
A reflection sheet and a method of manufacturing a reflection sheet are disclosed. The reflection sheet comprises a substrate layer and a reflective layer formed on the substrate layer, wherein the reflective layer comprises an alloy consisting of silver (Ag), palladium (Pd) and neodymium (Nd).
Abstract:
A flexible multilayer construction (100) for mounting a light emitting semiconductor device (200) (LESD), includes a flexible dielectric substrate (110) having an LESD mounting region (120), first and second electrically conductive pads (130, 140) disposed in the LESD mounting region for electrically connecting to corresponding first and second electrically conductive terminals of an LESD (200) received in the LESD mounting region, and a first fiducial alignment mark (150) for an accurate placement of an LESD in the LESD mounting region. The first fiducial alignment mark is disposed within the LESD mounting region.
Abstract:
A flexible polymeric dielectric layer (12) having first and second major surfaces, the first major surface having a conductive layer (20) thereon, the dielectric layer having at least one conduit (10) extending from the second major surface to the first major surface, the conduit having at least one lateral dimension of at least about one centimeter and being at least partially filled with conductive material (18), the conductive layer including at least one conductive feature (21) substantially aligned with the conduit (10), the conductive feature (21) supporting a plurality of light emitting semiconductor devices (22).
Abstract:
A white light source includes a short wavelength LED and a phosphor layer that emits light at longer visible wavelengths. A dichroic reflector transmits the longer wavelength light, and reflects some LED light onto the phosphor such that as light travels from the LED to the dichroic reflector it does not pass through the phosphor. The LED may emit blue light, and the dichroic reflector may transmit a second portion of the LED light, such that the light source output light includes both the second portion of the LED light and the longer wavelength phosphor light. The LED may be mounted on a flexible substrate having a cavity region and neighboring region, the LED being mounted in the cavity region. A dielectric layer may be thinner in the cavity region than in the neighboring region, or a hole may extend completely through the dielectric layer in the cavity region.
Abstract:
Provided is an article for supporting an LESD comprising a dielectric layer having a first major surface with a conductive layer thereon and a second major surface, the dielectric layer having at least three vias extending from the second major surface to the first major surface, the conductive layer comprising at least first and second conductive features, wherein the first conductive feature is adjacent an opening of at least a first via and the second conductive feature is adjacent an opening of at least a second and a third via.
Abstract:
A white light source includes a short wavelength LED and a phosphor layer that emits light at longer visible wavelengths. A dichroic reflector transmits the longer wavelength light, and reflects some LED light onto the phosphor such that as light travels from the LED to the dichroic reflector it does not pass through the phosphor. The LED may emit blue light, and the dichroic reflector may transmit a second portion of the LED light, such that the light source output light includes both the second portion of the LED light and the longer wavelength phosphor light. The LED may be mounted on a flexible substrate having a cavity region and neighboring region, the LED being mounted in the cavity region. A dielectric layer may be thinner in the cavity region than in the neighboring region, or a hole may extend completely through the dielectric layer in the cavity region.
Abstract:
A backlight system for a display is described. The system can include an anamorphic light guide that comprises a light receiving portion, a light diverting portion, and a light output portion. The light receiving portion receives light having an area illuminating a first aspect ratio and the output light portion outputs light having an area illuminating a second aspect ratio, the second aspect ratio greater than the first aspect ratio by at least an order of magnitude. The light input face is substantially perpendicular to light output face. The etendue of the light is substantially preserved.
Abstract:
A direct to chip cooling film for two-phase cooling. The film includes a dielectric layer having a first surface for attachment to a cold plate or circuits and having a second surface. A metal layer is on the second surface of the dielectric layer with a pattern of features on a side opposite the dielectric layer. This surface pattern provides increased surface area and multiple nucleation sites for bubbles formation for two-phase cooling. The features can also include metal nodules to further enhance the nucleation.