Abstract:
A process for growing an ultra-thin dielectric layer for use as a MOSFET gate oxide or a tunnel oxide for EEPROM's is described. A silicon oxynitride layer, with peaks in nitrogen concentration at the wafer-oxynitride interface and at the oxynitride surface and with low nitrogen concentration in the oxynitride bulk, is formed by a series of anneals in nitric oxide and nitrous oxide gas. This process provides precise thickness control, improved interface structure, low density of electron traps, and impedes dopant impurity diffusion from/to the dielectric and substrate. The process is easily integrated into existing manufacturing processes, and adds little increased costs.
Abstract:
An insulated gate field effect transistor (10) having differentially doped source-side (36A) and drain-side (42A) halo regions and a method for manufacturing the transistor (10). A source-side halo region (36A) is proximal a source extension region (48) and a drain-side halo region (42A) is proximal a drain extension region (52), where the drain-side halo region (42A) has a higher dopant concentration than the source-side halo region (36A). The source extension region (48) extends under a gate structure (22), whereas the drain extension region (52) may extend under the gate structure (22) or be laterally spaced apart from the gate structure (22) or be aligned to the side (26) of the gate structure (22) adjacent the drain region (54). A source region (53) is adjacent the source extension region (48) and a drain region (54) is adjacent the drain extension region (52).
Abstract:
An insulated gate field effect semiconductor component (100) having a source-side halo region (120) and a method for manufacturing the semiconductor component (100). A gate structure (112) is formed on a semiconductor substrate (102). The source-side halo region (120) is formed in the semiconductor substrate (102). After formation of the source-side halo region (120), spacers (127, 128, 152, 154) are formed adjacent opposing sides of the gate structure (112). A source extension region (136A) and a drain extension region (138A) are formed in the semiconductor substrate (102) using an angled implant. The source extension region (136A) extends under the gate structure (112), whereas the drain extension region (138A) may extend under the gate structure (112) or be laterally spaced apart from the gate structure (112). A source region (156) and a drain region (158) are formed in the semiconductor substrate (102).
Abstract:
Transistor drive current is controlled by controllably varying light exposure across a semiconductor substrate wafer based on an integrated circuit parameter. Integrated circuit parameters upon which the light exposure is varied include gate oxide thickness, rapid temperature annealing (RTA) temperature, polyetch bias and the like.
Abstract:
A process for growing an ultra-thin dielectric layer for use as a MOSFET gate oxide or a tunnel oxide for EEPROM's is described. A silicon oxynitride layer, with peaks in nitrogen concentration at the wafer-oxynitride interface and at the oxynitride surface and with low nitrogen concentration in the oxynitride bulk, is formed by a series of anneals in nitric oxide and nitrous oxide gas. This process provides precise thickness control, improved interface structure, low density of electron traps, and impedes dopant impurity diffusion from/to the dielectric and substrate. The process is easily integrated into existing manufacturing processes, and adds little increased costs.
Abstract:
An insulated gate field effect semiconductor component (100) having a source-side halo region (120) and a method for manufacturing the semiconductor component (100). A gate structure (112) is formed on a semiconductor substrate (102). The source-side halo region (120) is formed in the semiconductor substrate (102). After formation of the source-side halo region (120), spacers (127, 128, 152, 154) are formed adjacent opposing sides of the gate structure (112). A source extension region (136A) and a drain extension region (138A) are formed in the semiconductor substrate (102) using an angled implant. The source extension region (136A) extends under the gate structure (112), whereas the drain extension region (138A) may extend under the gate structure (112) or be laterally spaced apart from the gate structure (112). A source region (156) and a drain region (158) are formed in the semiconductor substrate (102).
Abstract:
Transistor drive current is controlled by controllably varying light exposure across a semiconductor substrate wafer based on an integrated circuit parameter. Integrated circuit parameters upon which the light exposure is varied include gate oxide thickness, rapid temperature annealing (RTA) temperature, polyetch bias and the like.