Abstract:
An adsorption structure is described that includes at least one adsorbent member formed of an adsorbent material and at least one porous member provided in contact with a portion of the adsorbent member to allow gas to enter and exit the portion of the adsorbent member. Such adsorption structure is usefully employed in adsorbent-based refrigeration systems. A method also is described for producing an adsorbent material, in which a first polymeric material is provided having a first density and a second polymeric material is provided having a second density, in which the second polymeric material is in contact with the first polymeric material to form a structure. The structure is pyrolyzed to form a porous adsorbent material including a first region corresponding to the first polymeric material and a second region corresponding to the second polymeric material, in which at least one of the pore sizes and the pore distribution differs between the first region and the second region.
Abstract:
A multi-step method for depositing ruthenium thin films having high conductivity and superior adherence to the substrate is described. The method includes the deposition of a ruthenium nucleation layer followed by the deposition of a highly conductive ruthenium upper layer. Both layers are deposited using chemical vapor deposition (CVD) employing low deposition rates.
Abstract:
A reinforced porous dielectric material having porosity including pores at least partially closed by an infilled material. The material in one application includes a siloxane such as octamethylcyclotetrasiloxane (OMCTS), tetramethylcyclotetrasiloxane (TMCTS), or CH3(EtO2)SiCHCH2O (DEOMORS), which is infiltrated with a hydrocarbon, such as propylene, ethylene, dimethylsilane or divinyldimethylsilane, and thereafter subjected to conditions for immobilizing the infiltrated material, for reinforcement and enhanced strength and mechanical integrity of the dielectric material. By appropriate choice of infiltrating conditions, the porosity of the dielectric material can be partially filled at the neck regions of the pores, to form closed pore structure having voids that reduce the dielectric constant of the overall material. In a specific application, the infilled material is a ring compound that is self- cross-linked and/or reactively bonded to the wall surface of the dielectric material porosity.
Abstract:
A liquid delivery system for delivery of an initially liquid reagent in vaporized form to a chemical vapor deposition reactor arranged in vapor-receiving relationship to the liquid delivery system. The liquid delivery system includes: (a) an elongate vaporization fluid flow passage defining a longitudinal axis and bounded by an enclosing wall to define a cross-section of the fluid flow passage transverse to the longitudinal axis; (b) a vaporization element contained within the fluid flow passage transverse to the longitudinal axis; a source reagent liquid feed passage having a terminus arranged to discharge liquid in a direction perpendicular to a facing surface of the vaporization element; (d) a heating means for heating the vaporization element to a temperature for vaporization of the liquid reagent; and (e) a manifold for flowing vapor formed by vaporization of the liquid reagent on the vaporization element from the fluid flow passage to the chemical vapor deposition reactor, in which the manifold including a diverting means to prevent non-volatile residue from flowing to the chemical vapor deposition reactor. A heater assembly may be employed for heating a component of the liquid delivery system, and the system may utilize a replaceable vaporizer cap removably engageable with the vaporization chamber.
Abstract:
Apparatus and method for determination of the endpoint of a cleaning process in which cleaning fluid is contacted with a structure to effect cleaning thereof. The cleaning process includes contacting a cleaning fluid with a structure to be cleaned and producing a cleaning effluent having a sensible heat thermal energy characteristic corresponding to extent of cleaning of the structure, disposing an object in the cleaning effluent that interacts with the cleaning effluent to produce a response indicative of the sensible heat thermal energy characteristic of the cleaning effluent, and monitoring such response to determine when the cleaning is completed. An endpointing algorithm and endpoint monitoring are also described, as well as endpoint monitor sensor elements that are useful to determine endpoint conditions in an efficient and reproduceable manner.
Abstract:
An adsorption structure is described that includes at least one adsorbent member formed of an adsorbent material and at least one porous member provided in contact with a portion of the adsorbent member to allow gas to enter and exit the portion of the adsorbent member. Such adsorption structure is usefully employed in adsorbent-based refrigeration systems. A method also is described for producing an adsorbent material, in which a first polymeric material is provided having a first density and a second polymeric material is provided having a second density, in which the second polymeric material is in contact with the first polymeric material to form a structure. The structure is pyrolyzed to form a porous adsorbent material including a first region corresponding to the first polymeric material and a second region corresponding to the second polymeric material, in which at least one of the pore sizes and the pore distribution differs between the first region and the second region.
Abstract:
High-k materials and devices, e.g., DRAM capacitors, and methods of making and using the same. Various methods of forming perovskite films are described, including methods in which perovskite material is deposited on the substrate by a pulsed vapor deposition process involving contacting of the substrate with perovskite material-forming metal precursors. In one such method, the process is carried out with doping or alloying of the perovskite material with a higher mobility and/or higher volatility metal species than the metal species in the perovskite material- forming metal precursors. In another method, the perovskite material is exposed to elevated temperature for sufficient time to crystallize or to enhance crystallization of the perovskite material, followed by growth of the perovskite material under pulsed vapor deposition conditions. Various perovskite compositions are described, including: (Sr, Pb)TiO3; SrRuO3 or SrTiO3, doped with Zn, Cd or Hg; Sr(Sn,Ru)O3; and Sr(Sn,Ti)O3.
Abstract:
A composite dielectric material including an early transition metal or metal oxide base material and a dopant, co-deposited, alloying or layering secondary material, selected from among Nb, Ge, Ta, La, Y, Ce, Pr, Nd, Gd, Dy, Sr, Ba, Ca, and Mg, and oxides of such metals, and alumina as a dopant or alloying secondary material. Such composite dielectric material can be formed by vapor deposition processes, e.g., ALD, using suitable precursors, to form microelectronic devices such as ferroelectric high k capacitors, gate structures, DRAMs, and the like.