Abstract:
An oscillator circuit includes transistors that are cross-coupled through routing conductors in a first conductive layer. The oscillator circuit also includes a varactor, a capacitor, and an option conductor in a second conductive layer. The option conductor forms at least a portion of a connection between one of the transistors and the capacitor or the varactor.
Abstract:
Integrated circuits with phase-locked loops are provided. Phase-locked loops may include an oscillator, a phase-frequency detector, a charge pump, a loop filter, a voltage-controlled oscillator, and a programmable divider. The voltage-controlled oscillator may include multiple inductors, an oscillator circuit, and a buffer circuit. A selected one of the multiple inductors may be actively coupled to the oscillator circuit. The voltage-controlled oscillators may have multiple oscillator circuits. Each oscillator circuit may be coupled to a respective inductor, may include a varactor, and may be powered by a respective voltage regulator. Each oscillator circuit may be coupled to a respective input transistor air in the buffer circuit through associated coupling capacitors. A selected one of the oscillator circuits may be turned on during normal operation by supplying a high voltage to the selected one of the oscillator circuit and by supply a ground voltage to the remaining oscillator circuits.
Abstract:
A circuit includes a first area, a second area, and a third area. The second area includes a locked loop circuit that generates a clock signal. The locked loop circuit receives a supply voltage that is isolated from noise generated in the first area. The third area includes multiple quads of channels and a clock line coupled to route at least one clock signal generated in the second area to the channels in each of the quads. The third area is separate from the second area in the circuit.
Abstract:
Circuitry for receiving a serial data signal (e.g., a high-speed serial data signal) includes adjustable equalizer circuitry for producing an equalized version of the serial data signal. The equalizer circuitry may include controllably variable DC gain and controllably variable AC gain. The circuitry may further include eye height and eye width monitor circuitry for respectively producing first and second output signals indicative of the height and width of the eye of the equalized version. The first output signal may be used in control of the DC gain of the equalizer circuitry, and the second output signal may be used in control of the AC gain of the equalizer circuitry.
Abstract:
An integrated circuit (e.g., a programmable integrated circuit such as a programmable microcontroller, a programmable logic device, etc.) includes programmable circuitry and 10 Gigabit Ethernet (10GbE) transceiver circuitry. The programmable circuitry and the transceiver circuitry may be configured to implement the physical (PHY) layer of the 10GbE networking specification. This integrated circuit may then be coupled to an optical transceiver module in order to transmit and receive 10GbE optical signals. The transceiver circuitry and interface circuitry that connects the transceiver circuitry with the programmable circuitry may be hard-wired or partially hard-wired.
Abstract:
A transmitter circuit is operable to provide an output signal in response to a first periodic signal. A multiplexer circuit is operable to provide a second periodic signal as a selected signal during a first phase of operation. The multiplexer circuit is operable to provide the output signal of the transmitter circuit as the selected signal during a second phase of operation. A sampler circuit is operable to generate first samples of the selected signal during the first phase of operation. The sampler circuit is operable to generate second samples of the selected signal during the second phase of operation. A duty cycle control circuit is operable to adjust a duty cycle of the first periodic signal based on the first and the second samples.
Abstract:
An integrated circuit capable of monitoring analog voltages inside an analog block is presented. The integrated circuit has an analog test multiplexer (mux) whose inputs are connected to analog voltages of interest inside an analog block. The analog test multiplexer directs a selected analog voltage from an analog block to the output of the analog test mux. The integrated circuit further includes an analog monitor state machine which provides the selection bits to the analog test multiplexer, enabling random access to the analog voltages inside the analog block. The integrated circuit also includes an analog to digital converter for converting the selected analog voltage from the analog test multiplexer into a digital representation.
Abstract:
A circuit includes phase detection circuitry, a clock signal generation circuit, a first frequency divider, and a second frequency divider. The phase detection circuitry compares an input clock signal to a feedback signal to generate a control signal. The clock signal generation circuit generates a periodic output signal in response to the control signal. The first frequency divider divides a frequency of the periodic output signal by a first value to generate a first frequency divided signal. The second frequency divider divides the frequency of the periodic output signal by a second value to generate a second frequency divided signal. The first and the second frequency divided signals are routed to the phase detection circuitry as the feedback signal during different time intervals.
Abstract:
Serial data signal receiver circuitry for inclusion on a PLD includes a plurality of equalizer circuits that are connected in series and that are individually controllable so that collectively they can compensate for a wide range of possible input signal attenuation characteristics. Other circuit features may be connected in relation to the equalizer circuits to give the receiver circuitry other capabilities. For example, these other features may include various types of loop-back test circuits, controllable termination resistance, controllable common mode voltage, and a controllable threshold for detection of an input signal. Various aspects of control of the receiver circuitry may be programmable.
Abstract:
The core of an IC may be supplied with a reduced voltage by an internal voltage dropping circuit VDC, while the input and output circuits remain compatible with circuits supplied with an unreduced voltage. Alternatively, the IC may be supplied with reduced voltage, and the input can be configured to accept signals from circuits supplied with the reduced voltage (figure 4), or from circuits supplied with the unreduced voltage (figure 5). When the IC is supplied with reduced voltage, an output driver (figure 9a) may be protected against leakage currents by applying a boosted voltage, e.g. from a voltage pump, to some driver nodes. The same IC design may be used in different operating modes depending on the option selected by metal masks, by fuses, or by EEPROM, EPROM, or SRAM cells.