Abstract:
A high speed, high-resolution flow imaging system is modified to achieve extended depth of field imaging. An optical distortion element is introduced into the flow imaging system. Light from an object, such as a cell, is distorted by the distortion element, such that a point spread function (PSF) of the imaging system is invariant across an extended depth of field. The distorted light is spectrally dispersed, and the dispersed light is used to simultaneously generate a plurality of images. The images are detected, and image processing is used to enhance the detected images by compensating for the distortion, to achieve extended depth of field images of the object. The post image processing preferably involves de-convolution, and requires knowledge of the PSF of the imaging system, as modified by the optical distortion element.
Abstract:
Combinatorially-synthesized deoxyribonucleic acid (DNA) oligonucleotides attached to encoded beads that are hybridized to amplified and labeled genomic DNA or ribonucleic acid (RNA) are analyzed using a flow imaging system. Oligonucleotides and corresponding reporters are bound to the surfaces of a plurality of small beads such that different beads bear different oligo sequences. Each bead bears a unique optical signature comprising a predefined number of unique reporters, where each reporter comprises a predefined combination of different fluorochromes. The composite spectral signature in turn identifies the unique nucleotide sequence of its attached oligo chains. This optical signature is rapidly decoded using an imaging system to discriminate the different reporters attached to each bead in a flow in regard to color and spatial position on the bead (see fig. 15).
Abstract:
Combinatorially-synthesized deoxyribonucleic acid (DNA) oligonucleotides attached to encoded beads that are hybridized to amplified and labeled genomic DNA or ribonucleic acid (RNA) are analyzed using a flow imaging system. Oligonucleotides and corresponding reporters are bound to the surfaces of a plurality of small beads such that different beads bear different oligo sequences. Each bead bears a unique optical signature comprising a predefined number of unique reporters, where each reporter comprises a predefined combination of different fluorochromes. The composite spectral signature in turn identifies the unique nucleotide sequence of its attached oligo chains. This optical signature is rapidly decoded using an imaging system to discriminate the different reporters attached to each bead in a flow in regard to color and spatial position on the bead (see fig. 15).