Abstract:
A packaged microchip has a stress sensitive microchip having a microchip coefficient of thermal expansion, a package having a package coefficient of thermal expansion, and an isolator having an isolator coefficient of thermal expansion. The isolator is connected between the stress sensitive microchip and the package. The microchip coefficient of thermal expansion illustratively is closer to the isolator coefficient of thermal expansion than it is to the package coefficient of thermal expansion.
Abstract:
A microphone has a movable diaphragm having a rest position, a stationary portion, and a set of springs movably coupling the diaphragm and the stationary portion. The diaphragm and stationary portion are spaced a first distance when the diaphragm is in the rest position. When not in the rest position, however, the diaphragm and stationary portion are capable of being spaced a second distance, which is greater than the first distance. Despite the change in distance, the diaphragm still is capable of returning the space from the second distance to the first distance when the diaphragm returns to the rest position.
Abstract:
A microphone system has a base with at least one electrical port for electrically communicating with an external device. The system also has a solid metal lid coupled to the base to form an internal chamber, and a silicon microphone secured to the lid within the chamber. The lid has an aperture for receiving an audible signal, while the microphone is electrically connected to the electrical port of the base.
Abstract:
A microphone system has a base coupled with first and second microphone apparatuses. The first microphone apparatus is capable of producing a first output signal having a noise component, while the second microphone apparatus is capable of producing a second output signal. The system also has combining logic operatively coupled with the first microphone apparatus and the second microphone apparatus. The combining logic uses the second output signal to remove at least a portion of the noise component from the first output signal.
Abstract:
A wafer cap protects micro electromechanical system ("MEMS") structures during a dicing of a MEMS wafer to produce individual MEMS dies. A MEMS wafer is prepared having a plurality of MEMS structure sites thereon. Upon the MEMS wafer, the wafer cap is mounted to produce a laminated MEMS wafer. The wafer cap is recessed in areas corresponding to locations of the MEMS structure sites on the MEMS wafer. The capped MEMS wafer can be diced into a plurality of MEMS dies without causing damage to or contaminating the MEMS die.
Abstract:
A microphone system has a primary microphone for producing a primary signal, a secondary microphone for producing a secondary signal, and a selector operatively coupled with both the primary microphone and the secondary microphone. The system also has an output for delivering an output audible signal principally produced by one of the to microphones. The selector selectively permits either 1) at least a portion of the primary signal and/ or 2) at least a portion of the secondary signal to be forwarded to the output as a function of the noise in the primary signal.
Abstract:
An apparatus has a leadframe based package base having a leadframe and a lid coupled with the package base. The lid and package base form a chamber for at least partially containing a microphone. The lid is electrically coupled with a given portion of the leadframe in the package base.
Abstract:
A package for a micro-electromechanical (MEMS) device is described. A premolded leadframe base has opposing top and bottom surfaces. Each surface is defined by a topology having at least one electrically conductive portion and at least one electrically non-conductive portion, and the topology of the top surface differs from the topology of the bottom surface.
Abstract:
A sensor has a die (with a working portion), a cap coupled with the die to at least partially cover the working portion, and a conductive pathway extending through the cap to the working portion. The pathway provides an electrical interface to the working portion.
Abstract:
A packaged microchip has an isolator (24) that minimizes stress transmission from its package (12) to its microchip (16). To that end, the packaged microchip includes a stress sensitive microchip having a bottom surface with a bottom surface area, and a package having an integral isolator (12). The isolator (24) has a top surface (28) with a top surface area that is smaller than the bottom surface area of the microchip (16). The microchip bottom surface (30) is coupled to the top surface (28) of the isolator (24).