Abstract:
A thermal management system for an electromagnetic induction-power transfer system. The system may include a charging apparatus including a housing that defines an interface surface. An accessory or induction-power consuming apparatus may be positioned proximate to the interface surface. The housing of the charging apparatus may include a power source and a power-transferring coil coupled to the power source and positioned below the interface surface. A thermal mass may be positioned within the housing and spaced apart from the interface surface. The housing may include a thermal path that is configured to conduct heat from the interface surface to the thermal mass.
Abstract:
An inductive charging interface with magnetic retention can be used for charging an electronic device (200). A magnetic core of an inductive charging configuration is divided into two magnetic elements (230, 232), one element (232) can be housed within a receptacle or receiving connector (212) of housing of an electric device (200) and the other element (230) can be housed within a plug or transmission connector (202). The poles of the two elements of the magnetic core create a magnetic field to retain the plug connector (202) in an aligned, mated position with the receptacle connector (212) of the electronic device (200) in addition to directing magnetic flux to flow in a circular path around and between the two elements of the magnetic core, thereby inducing a current for charging the internal battery (238) of the device (200).
Abstract:
Frames for plug connectorscapable of being a reduced size may include features to support contacts, house circuitry for coupling with the contacts, facilitate the flow of molten material during the molding of the frame, and allow for ease of insertion and removal of the plug connector to and from a corresponding receptacle connector. For example, a frame may include ledges, interlocks and rounded and tapered openings. Methods for manufacturing the frame are also provided.
Abstract:
A first electronic device connects with an second electronic device. The first electronic device may include a first connection surface and an inductive power transfer receiving coil and a first magnetic element positioned adjacent to the first connection surface. The second electronic device may similarly include a second connection surface and an inductive power transfer transmitting coil and second magnetic element positioned adjacent to the second connection surface. In the aligned position, alignment between the electronic devices may be maintained by magnetic elements and the inductive power coils may be configured to exchange power. The magnetic elements and/or the inductive power coils may include a shield that is configured to minimize or reduce eddy currents caused in the magnetic elements by the inductive power coils.
Abstract:
Embodiments can provide reversible or dual orientation USB plug connectors for mating with standard USB receptacle connectors, e.g., a standard Type A USB receptacle connector. Accordingly, the present invention may be compatible with any current or future electronic device that includes a standard USB receptacle connector. USB plug connectors according to the present invention can have a 180 degree symmetrical, double orientation design, which enables the plug connector to be inserted into a corresponding receptacle connector in either of two intuitive orientations. Some embodiments of the present invention may be used with or require a non-standard USB receptacle connector. Thus, embodiments of the present invention may reduce the potential for USB connector damage and user frustration during the incorrect insertion of a USB plug connector into a corresponding USB receptacle connector of an electronic device.
Abstract:
Devices and methods for assembling co-planar electrical contacts in a connector are provided herein. In one aspect, an exemplary method of assembly comprises depositing solder in a connector plug enclosure, positioning electrical contacts on the solder deposits, advancing the hotbar toward the enclosure contacting each of the electrical contacts so as to planarize a top surface of each of the electrical contacts with the enclosure and melting the solder with the heated hotbar to solder the electrical contacts to the enclosure. In one aspect, an exemplary hotbar device includes a magnet for releasably coupling the electrical contacts to the hotbar. In another aspect, the hotbar includes metallic portions for heating the electrical contacts and insulated ceramic portions for contacting the enclosure. In another aspect, an electrically conductive hotbar includes side portions that extend away from the bottom heating surface facilitating more uniform current flow through the hotbar.
Abstract:
A stackable connector interface with magnetic retention for electronic devices and accessories can allow power and data to be transferred between one or more stacked connectors. Each interconnected stackable connector may include one or more magnetic elements, which magnetic elements may have poles arranged to facilitate mating with other stackable connectors. The magnetic elements may also provide a magnetic retention force that holds mated connectors in contact with each other. The connectors can also include connection detection circuitry for determining whether the connectors are mated with other connectors, thereby allowing the connectors to prevent live contacts from being exposed at an unmated surface of the connectors. In addition to connection detection circuitry, routing circuitry may also be included to determine how signals should be transferred between the interconnected stackable connectors and/or corresponding devices.
Abstract:
Connector inserts and receptacles that provide a clear response to a user when a connector insert is properly inserted into a connector receptacle. One example may provide a connector system that provides a tactile response to a user when a connector insert is properly inserted into a connector receptacle. In other examples, the response provided to the user may be audible as well. The insertion of the connector insert into the connector receptacle may follow a force profile that includes an insertion profile defined by a substantially monotonically increasing resistance force from the beginning of insertion until an insertion peak is reached, followed by a click-through event leading to a final mating position.
Abstract:
Connector receptacles having a contoured form factor that allows their use in stylized enclosures. These receptacles may also be contoured to avoid circuitry internal to the device enclosure. The contoured form factor may also simplify the assembly of the connector receptacle.
Abstract:
A dual orientation connector having a connector tab with first and second major opposing sides and a plurality of electrical contacts carried by the connector tab. The plurality of contacts includes a first set of external contacts formed at the first major side and a second set of external contacts formed at the second major side. Each individual contact in the first plurality of contacts is electrically connected within the tab or body to a corresponding contact in the second plurality of contacts. In some embodiments contacts in the first and second pluralities of contacts that are directly opposite each other are coupled together. In some other embodiments, contacts in the first and second pluralities of contacts that are in a cater cornered relationship with each other are coupled together. The first plurality of contacts are symmetrically spaced with the second plurality of contacts and the connector tab is shaped to have 180 degree symmetry so that it can be inserted and operatively coupled to a corresponding receptacle connector in either of two insertion orientations.