Abstract:
An immersion lithographic apparatus having a fluid handling structure, the fluid handling structure configured to confine immersion fluid to a region and including: a meniscus controlling feature having an extractor exit on a surface of the fluid handling structure; and a gas knife system outwards of the extractor exit and including passages each having an exit, the passages having a plurality of first passages having a plurality of corresponding first exits on the surface, and a plurality of second passages having a plurality of corresponding second exits outwards of the first exits on the surface, wherein the surface faces and is substantially parallel to a top surface of a substrate during exposure, and the first exits and the second exits are arranged at a greater distance from the substrate than the extractor exit.
Abstract:
A fluid handling system for a lithographic apparatus, the fluid handling system configured to confine immersion liquid to a liquid confinement space between a part of a projection system and a surface of a substrate in the lithographic apparatus wherein a radiation beam projected from the projection system can irradiate the surface of the substrate by passing through the immersion liquid, the fluid handling system including: a liquid extraction member, having an inlet side and an outlet side, that is arranged to extract the immersion liquid from the liquid confinement space by a fluid flow from the inlet side to the outlet side; and a further liquid supply to the outlet side of the liquid extraction member arranged so that the outlet side receives liquid from a different source than the liquid confinement space.
Abstract:
An immersion lithographic apparatus having a fluid handling structure, the fluid handling structure configured to confine immersion fluid to a region and including: a meniscus controlling feature having an extractor exit on a surface of the fluid handling structure; and a gas knife system outwards of the extractor exit and including passages each having an exit, the passages having a plurality of first passages having a plurality of corresponding first exits on the surface, and a plurality of second passages having a plurality of corresponding second exits outwards of the first exits on the surface, wherein the surface faces and is substantially parallel to a top surface of a substrate during exposure, and the first exits and the second exits are arranged at a greater distance from the substrate than the extractor exit.
Abstract:
An immersion lithographic apparatus including: a liquid confinement structure configured to supply and confine immersion liquid to an immersion space between a final lens element of a projection system and a surface of the substrate and/or of a substrate table; and a passageway-former between the projection system and the liquid confinement structure, and a passageway between the passageway-former and an optically active part of the final lens element, the passageway being in liquid communication via an opening with the immersion space and extending radially outwardly, with respect to an optical axis of the projection system, at least to an edge of an exposed bottom surface of the final lens element and being constructed and configured such that in use it is filled with liquid from the immersion space by capillary action.
Abstract:
A lithographic apparatus includes a projection system configured to project a patterned radiation beam through the projection system onto a target portion of a substrate. A liquid confinement structure confines an immersion liquid in a space between the projection system and the substrate. The projection system includes: an exit surface through which to project the patterned radiation beam; and a further surface facing the liquid confinement structure. The further surface has a first static receding contact angle with respect to the immersion liquid. The exit surface has a second static receding contact angle with respect to the immersion liquid. The first static receding contact angle is: greater than the second static receding contact angle; and less than 65 degrees.
Abstract:
A fluid handling structure for a lithographic apparatus, the structure having: an aperture for the passage therethrough of a beam; a first part; and a second part, wherein the first and/or second part define a surface for the extraction of immersion fluid, relative movement between the first and second parts is effective to change a position of fluid flow into or out of the surface relative to the aperture, and the first or second part has at least one through-hole for the fluid flow and the other of the first or second part has at least one opening for the fluid flow, the at least one through-hole and at least one opening being in fluid communication when aligned, the relative movement allowing alignment of the at least one opening with different ones of the through-hole to change the position of the fluid flow into or out of the surface.
Abstract:
An immersion lithographic apparatus having a fluid handling structure, the fluid handling structure configured to confine immersion fluid to a region and including: a meniscus controlling feature having an extractor exit on a surface of the fluid handling structure; and a gas knife system outwards of the extractor exit and including passages each having an exit, the passages having a plurality of first passages having a plurality of corresponding first exits on the surface, and a plurality of second passages having a plurality of corresponding second exits outwards of the first exits on the surface, wherein the surface faces and is substantially parallel to a top surface of a substrate during exposure, and the first exits and the second exits are arranged at a greater distance from the substrate than the extractor exit.
Abstract:
A fluid handling structure for a lithographic apparatus configured to contain immersion fluid to a region, the fluid handling structure having, at a boundary of a space: at least one gas knife opening in a radially outward direction of the space; and at least one gas supply opening in the radially outward direction of the at least gas knife opening relative to the space. The gas knife opening and the gas supply opening both provide substantially pure CO2 gas so as to provide a substantially pure CO2 gas environment adjacent to, and radially outward of, the space.
Abstract:
An immersion lithographic apparatus is disclosed that includes a fluid handling system configured to confine immersion liquid to a localized space between a final element of a projection system and a substrate and/or table and a gas supplying device configured to supply gas with a solubility in immersion liquid of greater than 5×10−3 mol/kg at 20° C. and 1 atm total pressure to an area adjacent the space.
Abstract:
A fluid handling structure for a lithographic apparatus, the structure having: an aperture for the passage therethrough of a beam; a first part; and a second part, wherein the first and/or second part define a surface for the extraction of immersion fluid, relative movement between the first and second parts is effective to change a position of fluid flow into or out of the surface relative to the aperture, and the first or second part has at least one through-hole for the fluid flow and the other of the first or second part has at least one opening for the fluid flow, the at least one through-hole and at least one opening being in fluid communication when aligned, the relative movement allowing alignment of the at least one opening with different ones of the through-hole to change the position of the fluid flow into or out of the surface.