Abstract:
Corrections are calculated for use in controlling a lithographic apparatus. Using a metrology apparatus a performance parameter is measured at sampling locations across one or more substrates to which a lithographic process has previously been applied. A process model is fitted to the measured performance parameter, and an up-sampled estimate is provided for process-induced effects across the substrate. Corrections are calculated for use in controlling the lithographic apparatus, using an actuation model and based at least in part on the fitted process model. For locations where measurement data is available, this is added to the estimate to replace the process model values. Thus, calculation of actuation corrections is based on a modified estimate which is a combination of values estimated by the process model and partly on real measurement data.
Abstract:
A method for monitoring a lithographic process, and associated lithographic apparatus. The method includes obtaining height variation data relating to a substrate supported by a substrate support and fitting a regression through the height variation data, the regression approximating the shape of the substrate; residual data between the height variation data and the regression is determined; and variation of the residual data is monitored over time. The residual data may be deconvolved based on known features of the substrate support.
Abstract:
A lithography system configured to apply a pattern to a substrate, the system including a lithography apparatus configured to expose a layer of the substrate according to the pattern, and a machine learning controller configured to control the lithography system to optimize a property of the pattern, the machine learning controller configured to be trained on the basis of a property measured by a metrology unit configured to measure the property of the exposed pattern in the layer and/or a property associated with exposing the pattern onto the substrate, and to correct lithography system drift by adjusting one or more selected from: the lithography apparatus, a track unit configured to apply the layer on the substrate for lithographic exposure, and/or a control unit configured to control an automatic substrate flow among the track unit, the lithography apparatus, and the metrology unit.
Abstract:
A method, involving determining a first distribution of a first parameter associated with an error or residual in performing a device manufacturing process; determining a second distribution of a second parameter associated with an error or residual in performing the device manufacturing process; and determining a distribution of a parameter of interest associated with the device manufacturing process using a function operating on the first and second distributions. The function may include a correlation.
Abstract:
A first substrate (2002) has a calibration pattern applied to a first plurality of fields (2004) by a lithographic apparatus. Further substrates (2006, 2010) have calibration patterns applied to further pluralities of fields (2008, 2012). The different pluralities of fields have different sizes and/or shapes and/or positions. Calibration measurements are performed on the patterned substrates (2002, 2006, 2010) and used to obtain corrections for use in controlling the apparatus when applying product patterns to subsequent substrates. Measurement data representing the performance of the apparatus on fields of two or more different dimensions (2004, 2008, 2012) is gathered together in a database (2013) and used to synthesize the information needed to calibrate the apparatus for a new size. Calibration data is also obtained for different scan and step directions.
Abstract:
A method for determining a model to predict overlay data associated with a current substrate being patterned. The method involves obtaining (i) a first data set associated with one or more prior layers and/or current layer of the current substrate, (ii) a second data set including overlay metrology data associated with one or more prior substrates, and (iii) de-corrected measured overlay data associated with the current layer of the current substrate; and determining, based on (i) the first data set, (ii) the second data set, and (iii) the de-corrected measured overlay data, values of a set of model parameters associated with the model such that the model predicts overlay data for the current substrate, wherein the values are determined such that a cost function is minimized, the cost function comprising a difference between the predicted data and the de-corrected measured overlay data.
Abstract:
A method of determining a parameter of a lithographic apparatus, wherein the method includes providing first height variation data of a first substrate, providing first performance data of a first substrate, and determining a model based on the first height variation data and the first performance data. The method further includes obtaining second height variation data of a second substrate, inputting the second height variation data to the model, and determining second performance data of the second substrate by running the model. Based on the second performance data, the method determines a parameter of the apparatus.
Abstract:
A first substrate 2002 has a calibration pattern applied to a first plurality of fields 2004 by a lithographic apparatus. Further substrates 2006, 2010 have calibration patterns applied to further pluralities of fields 2008, 2012. The different pluralities of fields have different sizes and/or shapes and/or positions. Calibration measurements are performed on the patterned substrates 2002, 2006, 2010 and used to obtain corrections for use in controlling the apparatus when applying product patterns to subsequent substrates. Measurement data representing the performance of the apparatus on fields of two or more different dimensions (fields 2004, 2008, 2012 in this example) is gathered together in a database 2013 and used to synthesize the information needed to calibrate the apparatus for a new size. Calibration data is also obtained for different scan and step directions.
Abstract:
A method of compensating for focus deviations on a substrate having a plurality of layers present thereon, the method includes generating a focus prediction map for the substrate. In one approach, the focus prediction map is generated by obtaining key performance indicator data on the substrate using an alignment sensor, determining a correlation between the KPI data and focus offset data for positions on the substrate, and using the correlation and the KPI data, generating a focus prediction map for the substrate. In another approach, the prediction map is generated by obtaining a first layer height map for a first layer, measuring, with a level sensor, a second layer height map for a second layer overlying the first layer, and subtracting the first height map from the second height map to obtain a delta height map for the substrate.
Abstract:
A method, involving determining a first distribution of a first parameter associated with an error or residual in performing a device manufacturing process; determining a second distribution of a second parameter associated with an error or residual in performing the device manufacturing process; and determining a distribution of a parameter of interest associated with the device manufacturing process using a function operating on the first and second distributions. The function may include a correlation.