Abstract:
A method including performing a simulation to evaluate a plurality of metrology targets and/or a plurality of metrology recipes used to measure a metrology target, identifying one or more metrology targets and/or metrology recipes from the evaluated plurality of metrology targets and/or metrology recipes, receiving measurement data of the one or more identified metrology targets and/or metrology recipes, and using the measurement data to tune a metrology target parameter or metrology recipe parameter.
Abstract:
A scatterometer is used in a dark-field imaging mode to measure asymmetry-related parameters such as overlay. Measurements of small grating targets are made using identical optical paths, with the target in two orientations to obtain separate measurements of +1 and −1 diffraction orders. In this way, intensity scaling differences (tool asymmetry) are avoided. However, additive intensity defects due to stray radiation (ghosts) in the optical system cannot be avoided. Additive intensity issues strongly depend on the ratio between 0th and 1st order diffraction and are therefore strongly substrate (process) dependent. Calibration measurements are made on a few representative target gratings having biases. The calibration measurements are made, using not only different substrate rotations but also complementary apertures. Corrections are calculated and applied to correct asymmetry, to reduce error caused by stray radiation.
Abstract:
A method including modeling high resolution patterning error information of a patterning process involving a patterning device in a patterning system using an error mathematical model, modeling a correction of the patterning error that can be made by a patterning device modification tool using a correction mathematical model, the correction mathematical model having substantially the same resolution as the error mathematical model, and determining modification information for modifying the patterning device using the patterning device modification tool by applying the correction mathematical model to the patterning error information modeled by the error mathematical model.
Abstract:
Disclosed is a method of determining a correction for measured values of radiation diffracted from a target comprising a plurality of periodic structures, subsequent to measurement of the target using measurement radiation defining a measurement field. The correction acts to correct for measurement field location dependence in the measured values. The method comprises performing a first and second measurements of the periodic structures; and determining a correction from said first measurement and said second measurement. The first measurement is performed with said target being in a normal measurement location with respect to the measurement field. The second measurement is performed with the periodic structure in a shifted location with respect to the measurement field, said shifted location comprising the location of another of said periodic structures when said target is in said normal measurement location with respect to the measurement field.
Abstract:
A method including obtaining a measurement and/or simulation result of a pattern after being processed by an etch tool of a patterning system, determining a patterning error due to an etch loading effect based on the measurement and/or simulation result, and creating, by a computer system, modification information for modifying a patterning device and/or for adjusting a modification apparatus upstream in the patterning system from the etch tool based on the patterning error, wherein the patterning error is converted to a correctable error and/or reduced to a certain range, when the patterning device is modified according to the modification information and/or the modification apparatus is adjusted according to the modification information.
Abstract:
A method including: determining first error information based on a first measurement and/or simulation result pertaining to a first patterning device in a patterning system; determining second error information based on a second measurement and/or simulation result pertaining to a second patterning device in the patterning system; determining a difference between the first error information and the second error information; and creating modification information for the first patterning device and/or the second patterning device based on the difference between the first error information and the second error information, wherein the difference between the first error information and the second error information is reduced to within a certain range after the first patterning device and/or the second patterning device is modified according to the modification information.
Abstract:
A method including: obtaining information regarding a patterning error in a patterning process involving a patterning device; determining a nonlinearity over a period of time introduced by modifying the patterning error by a modification apparatus according to the patterning error information; and determining a patterning error offset for use with the modification apparatus based on the determined nonlinearity.