Abstract:
A device manufacturing method includes: exposing a first substrate using a lithographic apparatus to form a patterned layer having first features; processing the first substrate to transfer the first features into the first substrate; determining displacements of the first features from their nominal positions in the first substrate; determining a correction to at least partly compensate for the displacements; and exposing a second substrate using a lithographic apparatus to form a patterned layer having the first features, wherein the correction is applied for or during the exposing the second substrate.
Abstract:
A method for determining a plurality of corrections for control of at least one manufacturing apparatus used in a manufacturing process for providing product structures to a substrate in a plurality of layers, the method including: determining the plurality of corrections including a correction for each layer, based on an actuation potential of the applicable manufacturing apparatus used in the formation of each layer, wherein the determining includes determining corrections for each layer simultaneously in terms of a matching parameter.
Abstract:
A method for determining lithographic matching performance includes obtaining first monitoring data from recurrent monitoring for stability control for an available EUV scanner. For a DUV scanner, second monitoring data is similarly obtained from recurrent monitoring for stability control. The EUV first monitoring data are in a first layout. The DUV second monitoring data are in a second layout. A cross-platform overlay matching performance between the first lithographic apparatus and the second lithographic apparatus is determined based on the first monitoring data and the second monitoring data. This is done by reconstructing the first and/or second monitoring data into a common layout to allow comparison of the first and second monitoring data.
Abstract:
A substrate is loaded onto a substrate support of a lithographic apparatus, after which the apparatus measures locations of substrate alignment marks. These measurements define first correction information allowing the apparatus to apply a pattern at one or more desired locations on the substrate. Additional second correction information is used to enhance accuracy of pattern positioning, in particular to correct higher order distortions of a nominal alignment grid. The second correction information may be based on measurements of locations of alignment marks made when applying a previous pattern to the same substrate. The second correction information may alternatively or in addition be based on measurements made on similar substrates that have been patterned prior to the current substrate.