Abstract:
An optical system delivers illuminating radiation and collects radiation after interaction with a target structure on a substrate. A measurement intensity profile is used to calculate a measurement of the property of the structure. The optical system may include a solid immersion lens. In a calibration method, the optical system is controlled to obtain a first intensity profile using a first illumination profile and a second intensity profile using a second illumination profile. The profiles are used to derive a correction for mitigating the effect of ghost reflections. Using, e.g., half-moon illumination profiles in different orientations, the method can measure ghost reflections even where a SIL would cause total internal reflection. The optical system may include a contaminant detection system to control a movement based on received scattered detection radiation. The optical system may include an optical component having a dielectric coating to enhance evanescent wave interaction.
Abstract:
A metrology tool, an aplanatic singlet lens, and a method of designing an aplanatic singlet lens are provided. The metrology tool is for determining a characteristic of a structure on a substrate. The metrology tool comprises an optical detection system for detecting radiation over a wavelength range. The optical detection system comprises an aplanatic singlet lens for focusing the radiation on to a detector. The aplanatic singlet lens has an aplanatic wavelength which is within the wavelength range.
Abstract:
A reflector comprising a hollow body having an interior surface defining a passage through the hollow body, the interior surface having at least one optical surface part configured to reflect radiation and a supporter surface part, wherein the optical surface part has a predetermined optical power and the supporter surface part does not have the predetermined optical power. The reflector is made by providing an axially symmetric mandrel; shaping a part of the circumferential surface of the mandrel to form at least one inverse optical surface part that is not rotationally symmetric about the axis of the mandrel; forming a reflector body around the mandrel; and releasing the reflector body from the mandrel whereby the reflector body has an optical surface defined by the inverse optical surface part and a supporter surface part defined by the rest of the outer surface of the mandrel.
Abstract:
A lens system is disclosed, comprising: a first aspherical axicon lens element comprising a first refractive surface and a second refractive surface; a second aspherical axicon lens element comprising a third refractive surface similar to said second refractive surface and a fourth refractive surface similar to said first refractive surface, and an aperture stop located between the first aspherical axicon lens element and the second aspherical axicon lens element. The first aspherical axicon lens element and second aspherical axicon lens are mutually oriented such that second refractive surface and said third refractive surface are mutually facing. The first aspherical axicon lens element and the second aspherical axicon lens element are configured to minimize chromatic aberration for at least a spectral range of radiation relayed by the lens system.
Abstract:
An optical system (OS) for focusing a beam of radiation (B) on a region of interest in a metrology apparatus is described. The beam of radiation (B) comprises radiation in a soft X-ray or Extreme Ultraviolet spectral range. The optical system (OS) comprises a first stage (S1) for focusing the beam of radiation at an intermediate focus region. The optical system (OS) comprises a second stage (S2) for focusing the beam of radiation from the intermediate focus region onto the region of interest. The first and second stages each comprise a Kirkpatrick-Baez reflector combination. At least one reflector comprises an aberration- correcting reflector.
Abstract:
A method including obtaining a plurality of radiation distributions of measurement radiation redirected by the target, each of the plurality of radiation distributions obtained at a different gap distance between the target and an optical element of a measurement apparatus, the optical element being the nearest optical element to the target used to provide the measurement radiation to the target, and determining a parameter related to the target using data of the plurality of radiation distributions in conjunction with a mathematical model describing the measurement target.
Abstract:
A method involving a radiation intensity distribution for a target measured using an optical component at a gap from the target, the method including: determining a value of a parameter of interest using the measured radiation intensity distribution and a mathematical model describing the target, the model including an effective medium approximation for roughness of a surface of the optical component or a part thereof.
Abstract:
A method involving providing incident radiation of a first polarization state by an optical component into an interface of an object with an external environment, wherein a surface is provided adjacent the interface and separated by a gap from the interface, detecting, from incident radiation reflected from the interface and from the surface, radiation of a second different polarization state arising from the reflection of incident radiation of the first polarization at the interface as distinct from the radiation of the first polarization state in the reflected radiation, and producing a position signal representative of a relative position between the focus of the optical component and the object.
Abstract:
A method and apparatus for position control of a component relative to a surface is disclosed. The method may include calculating an estimated effect of, or derived from, Casimir force acting between the component and the surface, and compensating positioning of the component relative to the surface using the estimated effect.
Abstract:
Disclosed is an optical imaging system, and associated method, comprising a stage module configured to support an object such that an area of the object is illuminated by an illumination beam; an objective lens configured to collect at least one signal beam, the at least one signal beam originating from the illuminated area of the object; an image sensor configured to capture an image formed by the at least one signal beam collected by the objective lens; and a motion compensatory mechanism operable to compensate for relative motion of the stage module with respect to the objective lens during an image acquisition. The motion compensatory mechanism causes a compensatory motion of one or more of: said objective lens or at least one optical element thereof; said image sensor; and/or an optical element comprised within a detection branch and/or illumination branch of the optical imaging system.