Abstract:
Compounds effective in inhibiting replication of Hepatitis C virus ("HCV") are described. This invention also relates to processes of making such compounds, compositions comprising such compounds, and methods of using such compounds to treat HCV infection.
Abstract:
Compounds effective in inhibiting replication of Hepatitis C virus (HCV) are described. This invention also relates to processes of making such compounds, compositions comprising such compounds, and methods of using such compounds to treat HCV infection.
Abstract:
This invention relates to: (a) compounds and salts thereof that, inter alia, inhibit HCV; (b) intermediates useful for the preparation of such compounds and salts; (c) compositions comprising such compounds and salts; (d) methods for preparing such intermediates, compounds, salts, and compositions; (e) methods of use of such compounds, salts, and compositions; and (f) kits comprising such compounds, salts, and compositions.
Abstract:
Present application relates to the compounds of formula I useful to treat hepatitis C (HCV) infections. In the structure of the disclosed compounds is the uracil or thymine derivative linked via a phenylene into either fused 2-ring cyclic system (R6) or alternatively via additional two-atom linker (L) to a 5-6 membered monocycle (R6). Application further discloses polymorphs and pseudopolymorphs of two specific compounds: N-(6(3-t-butyl-5-(2>4-dioxo-3,4-dihydropyrimidin-1 (2H)- y!)2-methoxy-phenyl)naphthalen-2-yl)methanesulfonamide and (E)-N-(4(3-t- butyl-5-(2,4-dioxo-3)4-dihydropyrimidin-1 (2H)-yl)2-methoxy-styryl- phenyl)methanesulfonamide.
Abstract:
Compounds effective in inhibiting replication of Hepatitis C virus ("HCV") are described. This invention also relates to processes of making such compounds, compositions comprising such compounds, and methods of using such compounds to treat HCV infection.
Abstract:
This invention relates to: (a) compounds and salts thereof that, inter alia, inhibit HCV; (b) intermediates useful for the preparation of such compounds and salts; (c) compositions comprising such compounds and salts; (d) methods for preparing such intermediates, compounds, salts, and compositions; (e) methods of use of such compounds, salts, and compositions; and (f) kits comprising such compounds, salts, and compositions.
Abstract:
Enantiomerically enriched compounds having the absolute stereochemistry of the formula (I) or a pharmaceutically acceptable salt, ester or prodrug thereof, which are useful for inhibiting neuraminidases from disease-causing microorganisms, especially, influenza neuraminidase. Also disclosed are compositions and methods for preventing and treating diseases caused by microorganisms having a neuraminidase, processes for preparing the compounds and synthetic intermediates used in these processes.
Abstract:
Compounds effective in inhibiting replication of Hepatitis C virus ("HCV") are described. This invention also relates to processes of making such compounds, compositions comprising such compounds, and methods of using such compounds to treat HCV infection.
Abstract:
Present application relates to the compounds of formula I useful to treat hepatitis C (HCV) infections. In the structure of the disclosed compounds is the uracil or thymine derivative linked via a phenylene into either fused 2-ring cyclic system (R6) or alternatively via additional two-atom linker (L) to a 5-6 membered monocycle (R6). Application further discloses polymorphs and pseudopolymorphs of two specific compounds: N-(6(3-t-butyl-5-(2>4-dioxo-3,4-dihydropyrimidin-1 (2H)- y!)2-methoxy-phenyl)naphthalen-2-yl)methanesulfonamide and (E)-N-(4(3-t- butyl-5-(2,4-dioxo-3)4-dihydropyrimidin-1 (2H)-yl)2-methoxy-styryl- phenyl)methanesulfonamide.