Abstract:
The invention relates to polyester-polyether block copolymers which can be produced by the catalytically induced attachment of alkylene oxides to H functional starting materials. Said copolymers are characterised in that polyester alcohols are used as the H functional starting materials and multi-metal cyanide compounds are used as the catalysts.
Abstract:
The invention relates to highly functional polyether polyols of general formula (I), where R'1 = an unsubstituted or substituted aliphatic or aromatic group, R'2 = an unsubstituted or substituted aliphatic or aromatic group, H, OH, polyalkylether chains or halogen, X = polyalkylether chains or H, where at least one X = a polyalkylether chain, m = a whole number from 0 to 20, where if m = 0, then Xm = H and n = whole numbers from 4 to 12. The invention further relates to methods for production of said highly functional polyether polyols and the use thereof for the production of polyurethanes and non-ionogenic detergents.
Abstract:
Polyester-polyether block copolymers can be prepared by catalytic addition of alkylene oxides onto H-functional initiator substances, using polyester alcohols as H-functional initiator substances and multimetal cyanide compounds as catalysts.
Abstract:
Polyester-polyether block copolymers can be prepared by catalytic addition of alkylene oxides onto H-functional initiator substances, using polyester alcohols as H-functional initiator substances and multimetal cyanide compounds as catalysts.
Abstract:
The invention relates to high-functionality polyether polyols of the general formula where each R' 1 is an unsubstituted or substituted aliphatic or aromatic radical and each R' 2 is an unsubstituted or substituted aliphatic or aromatic radical, H, OH, polyalkyl ether chain or halogen, each X is a polyalkyl ether chain or H, where at least one X is a polyalkyl ether chain, and m is an integer from 0 to 20, where Xm is H when m is 0, and n is an integer from 4 to 12, to processes for preparing such high-functionality polyether polyols and also to the use thereof for preparing polyurethanes and nonionic surfactants.
Abstract:
Polyester-polyether block copolymers can be prepared by catalytic addition of alkylene oxides onto H-functional initiator substances, using polyester alcohols as H-functional initiator substances and multimetal cyanide compounds as catalysts.
Abstract:
POLYESTER-POLYETHER BLOCK COPOLYMERS CAN BE PREPARED BY CATALYTIC ADDITION OF ALKYLENE OXIDES ONTO H-FUNCTIONAL INITIOR SUBSTANCES, USING POLYESTER ALCOHOLS AS H-FUNCTIONAL INITIATOR SUBSTANCES AND MULTIMETAL CYANIDE COMPOUNDS AS CATALYSTS.
Abstract:
Reticulated flexible polyurethane foams are prepared by reacting organic and/or modified organic polyisocyanates (a) with a polyetherol mixture (b) and, if required, further compounds (c) having hydrogen atoms reactive toward isocyanates, in the presence of water and/or other blowing agents (d), catalysts (e) and further assistants and additives (f), by a process in which the polyetherol mixture (b) comprisesb1) at least one difunctional or polyfunctional polyetherol having an OH number of from 20 to 150 mg KOH/g, based on propylene oxide and/or butylene oxide and ethylene oxide and having an ethylene oxide content of more than 40% by weight, based on the total amount of alkylene oxide used, (b1.1) and, if required, further difunctional or polyfunctional polyetherols having an OH number of from 20 to 150 mg KOH/g, based on propylene oxide and/or butylene oxide and ethylene oxide and having an ethylene oxide content of not more than 40% by weight, based on the total amount of alkylene oxide used, which have a content of primary OH groups of more than 40%, (b1.2), with total amounts of the component (b1) of at least 70% by weight, based on the total weight of the component (b), (b1.1) being present in amounts of at least 50% by weight, based on the total weight of the component (b), andb2) at least one difunctional or polyfunctional polyetherol based on propylene oxide and/or butylene oxide and having an OH number of more than 25 mg KOH/g, in amounts of not more than 30% by weight, based on the total weight of the component (b),and silicone stabilizers are used in amounts of from 0.02 to 5% by weight, based on the total weight of the components (b) to f). The reticulated flexible polyurethane foams themselves prepared in this manner are used for upholstery purposes, for cavity filling and as support medium and filter medium.
Abstract:
Reticulated flexible polyurethane foams are prepared by reacting organic and/or modified organic polyisocyanates (a) with a polyetherol mixture (b) and, if required, further compounds (c) having hydrogen atoms reactive toward isocyanates, in the presence of water and/or other blowing agents (d), catalysts (e) and further assistants and additives (f), by a process in which the polyetherol mixture (b) comprises b1) at least one difunctional or polyfunctional polyetherol having an OH number of from 20 to 150 mg KOH/g, based on propylene oxide and/or butylene oxide and ethylene oxide and having an ethylene oxide content of more than 40% by weight, based on the total amount of alkylene oxide used, (b1.1) and, if required, further difunctional or polyfunctional polyetherols having an OH number of from 20 to 150 mg KOH/g, based on propylene oxide and/or butylene oxide and ethylene oxide and having an ethylene oxide content of not more than 40% by weight, based on the total amount of alkylene oxide used, which have a content of primary OH groups of more than 40%, (b1.2), with total amounts of the component (b1) of at least 70% by weight, based on the total weight of the component (b), (b1.1) being present in amounts of at least 50% by weight, based on the total weight of the component (b), and b2) at least one difunctional or polyfunctional polyetherol based on propylene oxide and/or butylene oxide and having an OH number of more than 25 mg KOH/g, in amounts of not more than 30% by weight, based on the total weight of the component (b), and silicone stabilizers are used in amounts of from 0.02 to 5% by weight, based on the total weight of the components (b) to (f). The reticulated flexible polyurethane foams themselves prepared in this manner are used for upholstery purposes, for cavity filling and as support medium and filter medium.
Abstract:
Low-density hydrophilic flexible polyurethane foams are prepared by reacting organic and/or modified organic polyisocyanates (a) with a polyetherol mixture,(b) and, if required, further compounds (c) having hydrogen atoms reactive toward isocyanates, in the presence of water and/or other blowing agents (d), catalysts (e) and, if required, further assistants and additives (f), by a process in which the polyetherol mixture (b) consists of b1) at least one difunctional or polyfunctional polyetherol based on propylene oxide and/or butylene oxide and ethylene oxide, having an ethylene oxide content of more than 40% by weight, based on the total amount of alkylene oxide used, an OH number of from 20 to 120 mg KOH/g and a proportion of primary OH groups of more than 20% and b2) at least one difunctional or polyfunctional polyetherol based on propylene oxide and/or butylene oxide and, if required, ethylene oxide, the ethylene oxide content being not more than 40% by weight, and having an OH number of more than 25 mg KOH/g, water in amounts of up to 15% by weight, based on the total weight of the components (b) to (f), and a mixture of gel catalysts and blowing catalysts are used and the foaming is effected in an index range of from 20 to 120. Furthermore, the flexible polyurethane foams themselves produced in this manner are used as upholstery material, as energy-absorbing material and in the cosmetics and hygiene sectors.