Abstract:
The invention concerns biologically degradable polyester amides P1 obtainable through reaction of a mixture consisting essentially of the following: (a1) a mixture consisting essentially of: 35-95 mol % adipic acid or ester-forming derivatives thereof or mixtures thereof, 5-65 mol % terephthalic acid or ester-forming derivatives thereof or mixtures thereof, and 0-5 mol % a compound containing sulphonate groups (the sum of the individual molar percentages is 100); (a2) a mixture consisting essentially of: (a21) 99.5-0.5 mol % a dihydroxy compound chosen from the group comprising C2-C6 alkane diols and C5-C10 cycloalkane diols, (a22) 0.5-99.5 mol % an amino C2-C12 alkanol or an amino-C5-C10 cycloalkanol, (a23) 0-50 mol % a diamino C1-C8 alkane; and (a24) 0-50 mol % a 2,2`-bisoxazoline of general formula (I), in which R is a single bond, a (CH2)q-alkylene group in which q = 2, 3 or 4, or a phenylene group (the sum of the individual molar percentages is 100 and the molar ratio of a1 to a2 is in the range 0.4:1 - 1.5:1). The polyester amides P1 will have a molecular weight (Mn) in the range 4000-40,000 g/mol, a viscosity number in the range 30-350 g/ml (measured in o-dichlorobenzene/phenol (weight ratio 50/50) at a concentration of 0.5 wt.% polyester amide P1 at a temperature of 25 DEG C) and a melting point in the range 50-220 DEG C; and a quantity of a compound D equivalent to 0-5 mol % of the molar quantity of components (a1) must also be used for the production of the polyester amides P1, said compound D having at least three groups capable of ester formation. The invention also concerns other biologically degradable polymers and thermoplastic moulding materials, processes for manufacturing the same, the use thereof for producing biologically degradable moulded articles and adhesives, and biologically degradable moulded articles, foams and blends with starch which can be obtained from the polymers or moulding materials according to the invention.
Abstract:
Biodegradable polyesteramides as defined in the specification are obtained by reacting a mixture consisting essentially ofa1) a mixture consisting essentially of35 to 95 mol % of adipic acid or ester-forming derivatives thereof,5 to 65 mol % of terephthalic acid or ester-forming derivatives thereof, and0 to 5 mol % of a compound containing sulfonate groups,a2) a mixture consisting essentially of95.5 to 0.5 mol % of a dihydroxy compound,0.5 to 99.5 mol % of an amino-C2-C12-alkanol or an amino-C5-C10-cycloalkanol,0 to 50 mol % of a diamino-C1-C8-alkane, and0 to 50 mol % of a 2,2'-bisoxazoline of the formula I wherein R1 is as set forth in the specification, anda3) 0 to 5 mol %, based on a1), of a compound D as set forth in the specification;and other biodegradable polymers and thermoplastic molding compositions, their manufacture and their use for producing biodegradable moldings, adhesives, foams, and coatings.
Abstract:
PCT No. PCT/EP96/00064 Sec. 371 Date Jul. 3, 1997 Sec. 102(e) Date Jul. 3, 1997 PCT Filed Jan. 9, 1996 PCT Pub. No. WO96/21691 PCT Pub. Date Jul. 18, 1996Biodegradable polyetheresteramides Q1 with a molecular weight (Mn) in the range from 6000 to 80,000 g/mol, a viscosity number in the range from 30 to 450 g/ml (measured in o-dichlorobenzene/phenol (50/50 ratio by weight) at a concentration of 0.5% by weight polyetheresteramide Q1 at 25 DEG C.), and a melting point in the range from 50 DEG to 200 DEG C., obtained by reacting a1) from 95 to 99.9% by weight polyetheresteramide P1, obtained by reacting a mixture of b1) 20-95 mol % adipic acid or ester-forming derivatives thereof, and 5-80 mol % terephthalic acid or ester-forming derivatives thereof, and b2) a mixture of a dihydroxy compound selected from C2-C6-alkanediols and C5-C10-cycloalkanediols, b22) a dihydroxy compound which contains ether functionalities and has the formula IHO-((CH2)n-O))m-HIwhere n is 2, 3 or 4 and m is an integer from 2 to 250, and b23) from 0.5 to 80 mol % of an amino-C2-C12-alkanol or an amino-C5-C10-cycloalkanol, with or without b24) a diamino-C1-C8-alkane, and/or b25) a 2,2'-bisoxazoline where the molar ratio of (b1) to (b2) is in the range from 0.4:1 to 1.5:1, and a2) from 0.1 to 5% by weight of a divinyl ether C1.
Abstract:
Biodegradable polyesteramides as defined in the specification are obtained by reacting a mixture consisting essentially ofa1) a mixture consisting essentially of35 to 95 mol % of adipic acid or ester-forming derivatives thereof,5 to 65 mol % of terephthalic acid or ester-forming derivatives thereof, and0 to 5 mol % of a compound containing sulfonate groups,a2) a mixture consisting essentially of95.5 to 0.5 mol % of a dihydroxy compound,0.5 to 99.5 mol % of an amino-C2-C12-alkanol or an amino-C5-C10-cycloalkanol,0 to 50 mol % of a diamino-C1-C8-alkane, and0 to 50 mol % of a 2,2'-bisoxazoline of the formula I wherein R1 is as set forth in the specification, anda3) 0 to 5 mol %, based on a1), of a compound D as set forth in the specification;and other biodegradable polymers and thermoplastic molding compositions, their manufacture and their use for producing biodegradable moldings, adhesives, foams, and coatings.
Abstract:
PROCESS FOR THE PREPARATION OF FLAME RESISTANT ELASTIC POLYURETHANE FLEXIBLE FOAMS AND LOW VISCOSITY MELAMINE POLYETHER POLYOL DISPERSIONS THEREFOR The present invention deals with a process for the preparation of flame resistant, elastic polyurethane flexible foams, comprising reacting: a) organic and/or modified organic polyisocyanate; with b) higher molecular weight polyols; and c) 1,6-hexanediol and/or trimethylolpropane; in the presence of d) melamine or mixtures of melamine and other flame retardants; e) at least one blowing agent; and f) at least one catalyst; and optionally g) auxiliaries and/or additives. In addition the present invention deals with suitable low viscosity melamine and polyetherpolyol dispersions for the process of the present invention comprising melamine, 1,6hexanediol and/or trimethylolpropane and at least one polyetherpolyol.
Abstract:
Biodegradable polyesteramides as defined in the specification are obtained by reacting a mixture consisting essentially ofa1) a mixture consisting essentially of35 to 95 mol % of adipic acid or ester-forming derivatives thereof,5 to 65 mol % of terephthalic acid or ester-forming derivatives thereof, and0 to 5 mol % of a compound containing sulfonate groups,a2) a mixture consisting essentially of95.5 to 0.5 mol % of a dihydroxy compound,0.5 to 99.5 mol % of an amino-C2-C12-alkanol or an amino-C5-C10-cycloalkanol,0 to 50 mol % of a diamino-C1-C8-alkane, and0 to 50 mol % of a 2,2'-bisoxazoline of the formula I wherein R1 is as set forth in the specification, anda3) 0 to 5 mol %, based on a1), of a compound D as set forth in the specification;and other biodegradable polymers and thermoplastic molding compositions, their manufacture and their use for producing biodegradable moldings, adhesives, foams, and coatings.
Abstract:
Biodegradable polyesteramides as defined in the specification are obtained by reacting a mixture consisting essentially ofa1) a mixture consisting essentially of35 to 95 mol % of adipic acid or ester-forming derivatives thereof,5 to 65 mol % of terephthalic acid or ester-forming derivatives thereof, and0 to 5 mol % of a compound containing sulfonate groups,a2) a mixture consisting essentially of95.5 to 0.5 mol % of a dihydroxy compound,0.5 to 99.5 mol % of an amino-C2-C12-alkanol or an amino-C5-C10-cycloalkanol,0 to 50 mol % of a diamino-C1-C8-alkane, and0 to 50 mol % of a 2,2'-bisoxazoline of the formula I wherein R1 is as set forth in the specification, anda3) 0 to 5 mol %, based on a1), of a compound D as set forth in the specification;and other biodegradable polymers and thermoplastic molding compositions, their manufacture and their use for producing biodegradable moldings, adhesives, foams, and coatings.
Abstract:
Biodegradable polyesteramides as defined in the specification are obtained by reacting a mixture consisting essentially ofa1) a mixture consisting essentially of35 to 95 mol % of adipic acid or ester-forming derivatives thereof,5 to 65 mol % of terephthalic acid or ester-forming derivatives thereof, and0 to 5 mol % of a compound containing sulfonate groups,a2) a mixture consisting essentially of95.5 to 0.5 mol % of a dihydroxy compound,0.5 to 99.5 mol % of an amino-C2-C12-alkanol or an amino-C5-C10-cycloalkanol,0 to 50 mol % of a diamino-C1-C8-alkane, and0 to 50 mol % of a 2,2'-bisoxazoline of the formula I wherein R1 is as set forth in the specification, anda3) 0 to 5 mol %, based on a1), of a compound D as set forth in the specification;and other biodegradable polymers and thermoplastic molding compositions, their manufacture and their use for producing biodegradable moldings, adhesives, foams, and coatings.
Abstract:
Biodegradable polyesteramides as defined in the specification are obtained by reacting a mixture consisting essentially ofa1) a mixture consisting essentially of35 to 95 mol % of adipic acid or ester-forming derivatives thereof,5 to 65 mol % of terephthalic acid or ester-forming derivatives thereof, and0 to 5 mol % of a compound containing sulfonate groups,a2) a mixture consisting essentially of95.5 to 0.5 mol % of a dihydroxy compound,0.5 to 99.5 mol % of an amino-C2-C12-alkanol or an amino-C5-C10-cycloalkanol,0 to 50 mol % of a diamino-C1-C8-alkane, and0 to 50 mol % of a 2,2'-bisoxazoline of the formula I wherein R1 is as set forth in the specification, anda3) 0 to 5 mol %, based on a1), of a compound D as set forth in the specification;and other biodegradable polymers and thermoplastic molding compositions, their manufacture and their use for producing biodegradable moldings, adhesives, foams, and coatings.
Abstract:
Biodegradable polyesteramides as defined in the specification are obtained by reacting a mixture consisting essentially ofa1) a mixture consisting essentially of35 to 95 mol % of adipic acid or ester-forming derivatives thereof,5 to 65 mol % of terephthalic acid or ester-forming derivatives thereof, and0 to 5 mol % of a compound containing sulfonate groups,a2) a mixture consisting essentially of95.5 to 0.5 mol % of a dihydroxy compound,0.5 to 99.5 mol % of an amino-C2-C12-alkanol or an amino-C5-C10-cycloalkanol,0 to 50 mol % of a diamino-C1-C8-alkane, and0 to 50 mol % of a 2,2'-bisoxazoline of the formula I wherein R1 is as set forth in the specification, anda3) 0 to 5 mol %, based on a1), of a compound D as set forth in the specification;and other biodegradable polymers and thermoplastic molding compositions, their manufacture and their use for producing biodegradable moldings, adhesives, foams, and coatings.