Abstract:
The present invention provides a catalyst composition comprising at least one platinum group metal; and at least one complex metal oxide wherein the at least one platinum group metal is supported on the at least complex metal oxide, wherein the complex metal oxide comprises ceria (calculated as CeO2) in an amount of about 50 to about 99 wt.%, based on the total weight of the complex metal oxide; and zirconia (calculated as ZrO2) in an amount of about 1.0 to about 50 wt.%, based on the total weight the complex metal oxide. The present invention also provides a catalytic article made from said catalyst composition, its preparation and use for the treatment of the exhaust gases.
Abstract:
The present invention relates to a catalyst comprising particles of a ternary intermetallic compound of the following formula (I): X 2 YZ wherein X, Y, and Z are different from one another; X being selected from the group consisting of Mn, Fe, Co, Ni, Cu, and Pd; Y being selected from the group consisting of V, Mn, Cu, Ti, and Fe; and Z being selected from the group consisting of Al, Si, Ga, Ge, In, Sn, and Sb; wherein the particles of the ternary intermetallic compound are supported on a support material, as well as to a method for its production and to its use as a catalyst, and more specifically as a catalyst in a process for the condensation of a carbonyl compound with a methylene group containing compound or for the selective catalytic reduction of nitrogen oxides in exhaust gas.
Abstract:
The present invention provides a catalyst composition comprising a) platinum; b) rhodium; and c) a ceria-alumina composite, a zirconia composite or a mixture thereof, wherein platinum is supported on the ceria-alumina composite, zirconia composite or mixture thereof, wherein rhodium is supported on the ceria-alumina composite, zirconia composite or mixture thereof, wherein CeO2 in the ceria alumina composite is 1.0 to 50 wt. %, based on the total weight of the ceria-alumina composite, wherein the amount of ZrO2 in the zirconia composite is 50 to 99 wt. %, based on the total weight of the zirconia composite. The present invention also provides a catalytic article comprising the catalyst composition and its preparation.
Abstract:
The present invention relates to a process for the production of mixed oxide particles comprising: (1) providing a dispersion comprising a disperse phase and a continuous phase, wherein the disperse phase comprises one or more precursor compounds of ceria, one or more precursor compounds of zirconia, and one or more precursor compounds of one or more rare earth oxides other than ceria and/or one or more precursor compounds of yttria; (2) forming an aerosol of the dispersion provided in step (1); and (3) pyrolyzing the aerosol of step (2) to obtain mixed oxide particles, as well as to mixed oxide particles obtainable from flame spray pyrolysis, and preferably obtain- able by the inventive process and to its use.
Abstract:
Ceria-Zirconia-Mixed oxide particles and process for their production by pyrolysis, wherein the process comprising: (1) providing a mixture comprising a solvent, one or more precursor compounds of ceria, one or more precursor compounds of zirconia, and one or more precursor compounds of one or more rare earth oxides other than ceria and/or one or more precursor compounds of yttria; (2) forming an aerosol of the mixture provided in step (1); and (3) pyrolyzing the aerosol of step (2) to obtain mixed oxide particles; wherein the content of the rare earth oxides other than ceria and/or of yttria in the mixed oxide particles formed in step (3) is comprised in the range of from 0.1 to 4.9 wt.-% based on the total weight of the rare earth oxides, yttria, and zirconia contained in the mixed oxide particles, as well as to mixed oxide particles obtainable from flame spray pyrolysis and to their use as an oxygen storage component, a catalyst and/or as a catalyst support.
Abstract:
The present invention relates to a selective catalytic reduction catalyst for the treatment of an exhaust gas of a diesel engine comprising: a flow-through substrate comprising an inlet end, an outlet end, a substrate axial length extending from the inlet end to the outlet end and a plurality of passages defined by internal walls of the flow through substrate extending therethrough; a coating disposed on the surface of the internal walls of the substrate, wherein the coating comprises a non-zeolitic oxidic material comprising manganese and one or more of the metals of the groups 4 to 11 and 13 of the periodic table, and further comprises one or more of a vanadium oxide and a zeolitic material comprising one or more of copper and iron.
Abstract:
The present invention relates to a composite oxide comprising ceria, praseodymia and alumina, wherein the cerium : praseodymium molar ratio of the composite oxide is 84:16 or less, as well as to a method of preparing the composite oxide and to its use, in particular in a method of treating an exhaust gas stream.
Abstract:
The present invention relates to a composite oxide comprising ceria, praseodymia and alumina, wherein the cerium : praseodymium molar ratio of the composite oxide is 84:16 or less, as well as to a method of preparing the composite oxide and to its use, in particular in a method of treating an exhaust gas stream.
Abstract:
The present invention relates to a catalyst comprising particles of a ternary intermetallic compound of the following formula (I): X2YZ wherein X, Y, and Z are different from one another; X being selected from the group consisting of Mn, Fe, Co, Ni, Cu, and Pd; Y being selected from the group consisting of V, Mn, Cu, Ti, and Fe; and Z being selected from the group consisting of Al, Si, Ga, Ge, In, Sn, and Sb; wherein the particles of the ternary intermetallic compound are supported on a support material, as well as to a method for its production and to its use as a catalyst, and more specifically as a catalyst in a process for the condensation of a carbonyl compound with a methylene group containing compound or for the selective catalytic reduction of nitrogen oxides in exhaust gas.