Abstract:
The present invention is directed to novel compounds, methods of manufacture and methods of use. The present invention is also directed to solid drug/active agent particles having one or more of the compounds of the present invention associated with the surface thereof. The compounds of the present invention are comprised of a non-polar polyether covalently linked to an anionic sulfonate group. The compounds have an amphipathic quality and preferably, are surface active. Such compounds are preferably useful as surface-active agents to coat and stabilize dispersions of particles in a continuous liquid medium. These surface-active agents may be applied in the stabilization of suspensions, emulsions, or liposome formulations intended for pharmaceutical, medical, cosmetic, or agricultural use. The particles that can be prepared by a variety of methods and will preferably comprise a pharmaceutical agent. Pharmaceutical compositions of the present invention can be used to treat amyriad of conditions and can be administered by many routes, including intravenous, intramuscular, subcutaneous, intrathecal, subdural, intracameral, intracerebral, intralesional, topical, oral, buccal, rectal, pulmonary, and nasal.
Abstract:
The present invention relates to polymeric derivatives, which can be conjugated to an amino-containing drug to improve its in vivo properties. The polymeric derivative can subsequently be released to yield the drug in its native form. Methods of preparing and using these polymeric derivatives and drug conjugates are described.
Abstract:
A medical device, such as a vascular access device, is disclosed for providing access to a medical fluid flow path for the introduction or withdrawal of medical fluids to and from the flow path. The access device includes an indicator for providing a visual indication when the access device has been exposed to an antiseptic agent.
Abstract:
A method for immobilizing dyes and antimicrobial agents on a porous surface is disclosed and described. The surface may be that of a medical device, such as a catheter, a connector, a drug vial spike, a bag spike, a prosthetic device, an endoscope, and surfaces of an infusion pump. The surfaces may also be one or more of those associated with a dialysis treatment, such as peritoneal dialysis or hemodialysis, where it is important that working surface for the dialysis fluid be sterile. These surfaces include connectors for peritoneal dialysis sets or for hemodialysis sets, bag spikes, dialysis catheters, and so forth. A method for determining whether a surface has been sterilized, and a dye useful in so indicating, is also disclosed.
Abstract:
The present invention is directed to novel compounds, methods of manufacture and methods of use. The present invention is also directed to solid drug/active agent particles having one or more of the compounds of the present invention associated with the surface thereof. The compounds of the present invention are comprised of a non-polar polyether covalently linked to an anionic sulfonate group. The compounds have an amphipathic quality and preferably, are surface active. Such compounds are preferably useful as surface-active agents to coat and stabilize dispersions of particles in a continuous liquid medium. These surface-active agents may be applied in the stabilization of suspensions, emulsions, or liposome formulations intended for pharmaceutical, medical, cosmetic, or agricultural use. The particles that can be prepared by a variety of methods and will preferably comprise a pharmaceutical agent. Pharmaceutical compositions of the present invention can be used to treat amyriad of conditions and can be administered by many routes, including intravenous, intramuscular, subcutaneous, intrathecal, subdural, intracameral, intracerebral, intralesional, topical, oral, buccal, rectal, pulmonary, and nasal.
Abstract:
The invention provides methods of immobilizing an active agent to a substrate surface, including the steps of, depositing a primer compound on a substrate, thereby forming a primed substrate, contacting the primed substrate with a solution of a compound including a trihydroxyphenyl group, thereby forming a trihydroxyphenyl-treated primed substrate, and contacting the trihydroxyphenyl-treated primed substrate with a solution of an active agent, thereby immobilizing the active agent on the substrate. Further provided are methods of immobilizing an active agent on a substrate, including the steps of providing a substrate, combining a solution of a compound including a trihydroxyphenyl group with a solution of an active agent, thereby forming a solution of an active agent-trihydroxyphenyl conjugate, and contacting the primed substrate with the solution of the active agent-trihydroxyphenyl conjugate, thereby immobilizing the active agent on the substrate. The invention further provides substrates and medical device or device components with active agents immobilized on the surface thereof.
Abstract:
Novel polysaccharide compounds are disclosed for decorating biomolecular surfaces to increase isotropic size and mask antigenicity. The oligosaccharides may by synthesized as repeating disaccharide units, or may be derived by acid hydrolysis of naturally occurring polysaccharides. Such natural sources include chondroitins obtained from shark cartilage, or hyaluronic acid. The polyanionic sulfate groups contained in the sugar moieties impart negative charges which repel the molecules from the negatively charged wall of capillaries, to lengthen retention times of decorated drug molecules, such as cross-linked hemoglobin, in the peripheral circulation.
Abstract:
A method for immobilizing dyes and antimicrobial agents on a polymeric cover or housing for a medical device is disclosed and described. The surface may be that of a catheter, a connector, a drug vial spike, a bag spike, a prosthetic device, an endoscope, a surface of an infusion pump, a key pad, a touch screen or a handle. The surfaces may also be one or more of those associated with a infusion of a medicament or dialysis treatment, such as peritoneal dialysis or hemodialysis, where it is important that the working surface for the dialysis fluid be sterile. These surfaces include connectors for peritoneal dialysis sets or for hemodialysis sets, bag spikes, dialysis catheters, and so forth. A method for determining whether a surface has been sterilized, and a dye useful in so indicating, is also disclosed.
Abstract:
The invention provides a device (32) for removing uremic toxins in a dialysis procedure comprising a body having an inlet (42) and an outlet (44) and defining an interior. The interior includes a layer comprising urease, a layer comprising zirconium oxide, a layer comprising zirconium phosphate, and a layer comprising carbon. The device is constructed and arranged so that a fluid entering the device contacts the zirconium phosphate layer before contacting the urease layer and before contacting the zirconium oxide layer.
Abstract:
Novel polysaccharide compounds are disclosed for decorating biomolecular surfaces to increase isotropic size and mask antigenicity. The oligosaccharides may be synthesized as repeating disaccharide units, or may be derived by acid hydrolysis of naturally occurring polysaccharides. Such natural sources include chondroitins obtained from shark cartilage, or hyaluronic acid. The polyanionic sulfate groups contained in the sugar moieties impart negative charges which repel the molecules from the negatively charged wall of capillaries, to lengthen retention times of decorated drug molecules, such as crosslinked hemoglobin, in the peripheral circulation.