Abstract:
The ratio of analytes is determined directly from the responses of the analytes using a conversion method. Individual analyte responses are obtained by using a selected measuring technique, and these individual responses are used as the independent variables in a conversion method. The dependent variable of conversion method is the desired analyte ratio. The resulting conversion method is then used to directly calculate the desired ratio of analytes as a function of the measured responses. No intermediate conversions, such as using a calibration curve to convert individual measured analyte responses to concentration values, are needed to obtain the desired ratio.
Abstract:
Methods, systems, and apparatus for accurately determining a proportion (ratio) of two analytes is provided, as well as provide a concentration of a first analyte from a determined concentration of a second analyte and from a proportion of the analytes to each other. In one aspect, a surface model (called a dose surface herein) relating the concentrations of the two analytes to the proportion can be used to obtain accurate values for one of the variables (e.g. a concentration or the proportion) when the other two variables have previously been obtained. The dose surface can be a three-dimensional surface and be non-linear. The dose surface model can include multiple regression functions. For example, measured responses can be individually converted to concentrations using two dose-response curves, and the concentrations can be input to a dose surface function to obtain the proportion.
Abstract:
The present invention provides a method for determining whether a subject is suffering from celiac disease by contacting a sample of bodily fluid from the subject, with an antigen formed from a hexamer of a gliadin fusion protein immobilized on a solid support. The gliadin fusion protein of the antigen includes a recombinant deamidated gliadin linked to a tag such as Glutathione-S transferase (GST) protein. The antigen is prepared by immobilizing the gliadin fusion protein on the solid support. The antigen can further include tissue Transglutaminase (tTG) cross-linked to the gliadin fusion protein. When tTG is present, the tTG and recombinant deamidated gliadin are mixed together prior to immobilization to the solid phase.
Abstract:
The ratio of analytes is determined directly from the responses of the analytes using a conversion method. Individual analyte responses are obtained by using a selected measuring technique, and these individual responses are used as the independent variables in a conversion method. The dependent variable of conversion method is the desired analyte ratio. The resulting conversion method is then used to directly calculate the desired ratio of analytes as a function of the measured responses. No intermediate conversions, such as using a calibration curve to convert individual measured analyte responses to concentration values, are needed to obtain the desired ratio.
Abstract:
The present invention provides a method for determining whether a subject is suffering from celiac disease by contacting a sample of bodily fluid from the subject, with an antigen formed from a hexamer of a gliadin fusion protein immobilized on a solid support. The gliadin fusion protein of the antigen includes a recombinant deamidated gliadin linked to a tag such as Glutathione-S transferase (GST) protein. The antigen is prepared by immobilizing the gliadin fusion protein on the solid support. The antigen can further include tissue Transglutaminase (tTG) cross-linked to the gliadin fusion protein. When tTG is present, the tTG and recombinant deamidated gliadin are mixed together prior to immobilization to the solid phase.
Abstract:
Un antígeno para detectar la enfermedad celíaca que comprende una proteína gliadina desamidada recombinante o sintética que comprende un hexámero de péptidos, en el que cada péptido tiene la secuencia de SEQ ID NO: 1.
Abstract:
Methods, systems, and apparatus for accurately determining a proportion (ratio) of two analytes is provided, as well as provide a concentration of a first analyte from a determined concentration of a second analyte and from a proportion of the analytes to each other. In one aspect, a surface model (called a dose surface herein) relating the concentrations of the two analytes to the proportion can be used to obtain accurate values for one of the variables (e.g. a concentration or the proportion) when the other two variables have previously been obtained. The dose surface can be a three-dimensional surface and be non-linear. The dose surface model can include multiple regression functions. For example, measured responses can be individually converted to concentrations using two dose-response curves, and the concentrations can be input to a dose surface function to obtain the proportion.
Abstract:
The ratio of analytes is determined directly from the responses of the analytes using a conversion method. Individual analyte responses are obtained by using a selected measuring technique, and these individual responses are used as the independent variables in a conversion method. The dependent variable of conversion method is the desired analyte ratio. The resulting conversion method is then used to directly calculate the desired ratio of analytes as a function of the measured responses. No intermediate conversions, such as using a calibration curve to convert individual measured analyte responses to concentration values, are needed to obtain the desired ratio.
Abstract:
The present invention provides a method for determining whether a subject is suffering from celiac disease by contacting a sample of bodily fluid from the subject, with an antigen formed from a hexamer of a gliadin fusion protein immobilized on a solid support. The gliadin fusion protein of the antigen includes a recombinant deamidated gliadin linked to a tag such as Glutathione-S transferase (GST) protein. The antigen is prepared by immobilizing the gliadin fusion protein on the solid support. The antigen can further include tissue Transglutaminase (tTG) cross-linked to the gliadin fusion protein. When tTG is present, the tTG and recombinant deamidated gliadin are mixed together prior to immobilization to the solid phase. 9765390_1 (GHMatters) P97180.AU.1
Abstract:
The present invention provides a method for determining whether a subject is suffering from celiac disease by contacting a sample of bodily fluid from the subject, with an antigen formed from a hexamer of a gliadin fusion protein immobilized on a solid support. The gliadin fusion protein of the antigen includes a recombinant deamidated gliadin linked to a tag such as Glutathione-S transferase (GST) protein. The antigen is prepared by immobilizing the gliadin fusion protein on the solid support. The antigen can further include tissue Transglutaminase (tTG) cross-linked to the gliadin fusion protein. When tTG is present, the tTG and recombinant deamidated gliadin are mixed together prior to immobilization to the solid phase. 9765390_1 (GHMatters) P97180.AU.1