Abstract:
Complementary metal oxide semiconductor (CMOS) ultrasonic transducers (CUTs) and methods for forming CUTs are described. The CUTs may include monolithically integrated ultrasonic transducers and integrated circuits for operating in connection with the transducers. The CUTs may be used in ultrasound devices such as ultrasound imaging devices and/or high intensity focused ultrasound (HIFU) devices.
Abstract:
To implement a single-chip ultrasonic imaging solution, on-chip signal processing may be employed in the receive signal path to reduce data bandwidth and a high-speed serial data module may be used to move data for all received channels off-chip as digital data stream. The digitization of received signals on-chip allows advanced digital signal processing to be performed on-chip, and thus permits the full integration of an entire ultrasonic imaging system on a single semiconductor substrate. Various novel waveform generation techniques, transducer configuration and biasing methodologies, etc., are likewise disclosed. HIFU methods may additionally or alternatively be employed as a component of the "ultrasound- on- a-chip" solution disclosed herein.
Abstract:
An ultrasound-on-a-chip device has an ultrasonic transducer substrate with plurality of transducer cells, and an electrical substrate. For each transducer cell, one or more conductive bond connections are disposed between the ultrasonic transducer substrate and the electrical substrate. Examples of electrical substrates include CMOS chips, integrated circuits including analog circuits, interposers and printed circuit boards.
Abstract:
Aspects of technology described herein relate to ultrasound apparatuses including capacitive micromachines ultrasonic transducers (CMUTs) that are directly electrically coupled to delta-sigma analog-to-digital converters (ADCs). The apparatus may lack an amplifier or multiplexer between each CMUT and delta-sigma ADC. The apparatus may include between 100 and 20,000 CMUTs and between 100 and 20,000 delta-sigma ADCs, each of the CMUTs directly electrically coupled to one of the delta-sigma ADCs. The CMUTs and the delta-sigma ADCs may be monolithically integrated on a single substrate. The delta-sigma ADCs may lack an integrator distinct from the CMUT. An internal capacitance of the CMUT may serve as an integrator for the delta-sigma ADC.
Abstract:
Micromachined ultrasonic transducers formed in complementary metal oxide semiconductor (CMOS) wafers are described, as are methods of fabricating such devices. A metallization layer of a CMOS wafer may be removed by sacrificial release to create a cavity of an ultrasonic transducer. Remaining layers may form a membrane of the ultrasonic transducer.
Abstract:
A method of forming an ultrasound transducer device includes bonding a membrane to a substrate so as to form a sealed cavity between the membrane and the substrate. An exposed surface located within the sealed cavity includes a getter material that is electrically isolated from a bottom electrode of the cavity.
Abstract:
Aspects of the technology described herein relate to an apparatus including an ultrasound-on-a-chip device configured to be bound to a user's wrist. The ultrasound-on-a-chip device may include a two-dimensional array of ultrasonic transducers. The transducers may be capacitive micromachined ultrasonic transducers (CMUTs) and may be configured to emit ultrasound waves having a frequency between approximately 5-20 MHz. A coupling strip may be coupled to the ultrasound-on-a-chip device to reduce the air gap between the ultrasound-on-a-chip device and the user's wrist. The ultrasound-on-a-chip device may be waterproof and may be able to perform both transverse and longitudinal ultrasound scanning without being rotated. The ultrasound-on-a-chip device may be configured to calculate pulse wave velocity through a blood vessel in a user's wrist.
Abstract:
A time gain compensation (TGC) circuit for an ultrasound device includes a first amplifier having an integrating capacitor and a control circuit configured to generate a TGC control signal that controls an integration time of the integrating capacitor, thereby controlling a gain of the first amplifier. The integration time is an amount of time an input signal is coupled to the first amplifier before the input signal is isolated from the first amplifier.
Abstract:
Micromachined ultrasonic transducers formed in complementary metal oxide semiconductor (CMOS) wafers are described, as are methods of fabricating such devices. A metallization layer of a CMOS wafer may be removed by sacrificial release to create a cavity of an ultrasonic transducer. Remaining layers may form a membrane of the ultrasonic transducer.