Abstract:
Nitrile activators, such as N-alkyl ammonium acetonitrile activators, are combined with a source of active oxygen as cleaning and bleaching compositions. Preferred activator embodiments of the invention include salts of N-methyl morpholinium acetonitrile, N-butyl morpholinium acetonitrile, N-hexyl morpholinium acetonitrile, and N-octyl morpholinium acetonitrile. A particularly preferred activator embodiment is an N-methyl morpholinium acetonitrile salt. The nitrile and active oxygen react to form a bleaching agent which is applied to a stain on an article. The treated stain is contacted with dense gas so as to provide substantially non-aqueous stain removal. One embodiment is a composition in which the nitrile and active oxygen are disposed in the dense carbon dioxide.
Abstract:
Preferred embodiments of the invention are heterocyclic cationic activators with the structure of Formula I FORMULA I wherein A is a saturated ring formed by a plurality of atoms in addition to the N1 atom, the saturated ring atoms including at least one carbon atom and at least one of O, S, and N atoms, the substituent R1 bound to the N1 atom of the Formula I structure including either (a) a C1-24 alkyl or alkoxylated alkyl where the alkoxy is C2-4, (b) a C4-24 cycloalkyl, (c) a C7-24 alkaryl, (d) a repeating or nonrepeating alkoxy or alkoxylated alcohol, where the alkoxy unit is C2-4, or (e) -CR2R3C 3BOND N where R2 and R3 are each H, a C1-24 alkyl, cycloalkyl, or alkaryl, or a repeating or nonrepeating alkoxyl or alkoxylated alcohol where the alkoxy unit is C2-4, the R2 and R3 substituents being each H, a C1-24 alkyl, cycloalkyl, or alkaryl, or a repeating or nonrepeating alkoxyl or alkoxylated alcohol where the alkoxy unit is C2-4, Z is in the range of 0 to 10, and wherein Y is an anionic peracid activator. When these are dissolved in an aqueous solution in the presence of an active oxygen source, coactivation will occur for improved bleaching.
Abstract:
Preferred embodiments of the invention are heterocyclic cationic activators with the structure of Formula I FORMULA I wherein A is a saturated ring formed by a plurality of atoms in addition to the N1 atom, the saturated ring atoms including at least one carbon atom and at least one of O, S, and N atoms, the substituent R1 bound to the N1 atom of the Formula I structure including either (a) a C1-24 alkyl or alkoxylated alkyl where the alkoxy is C2-4, (b) a C4-24 cycloalkyl, (c) a C7-24 alkaryl, (d) a repeating or nonrepeating alkoxy or alkoxylated alcohol, where the alkoxy unit is C2-4, or (e) -CR2R3C 3BOND N where R2 and R3 are each H, a C1-24 alkyl, cycloalkyl, or alkaryl, or a repeating or nonrepeating alkoxyl or alkoxylated alcohol where the alkoxy unit is C2-4, the R2 and R3 substituents being each H, a C1-24 alkyl, cycloalkyl, or alkaryl, or a repeating or nonrepeating alkoxyl or alkoxylated alcohol where the alkoxy unit is C2-4, Z is in the range of 0 to 10, and wherein Y is an anionic peracid activator. When these are dissolved in an aqueous solution in the presence of an active oxygen source, coactivation will occur for improved bleaching.
Abstract:
Preferred embodiments of the invention are heterocyclic cationic activators with the structure of Formula I FORMULA I wherein A is a saturated ring formed by a plurality of atoms in addition to the N1 atom, the saturated ring atoms including at least one carbon atom and at least one of O, S, and N atoms, the substituent R1 bound to the N1 atom of the Formula I structure including either (a) a C1-24 alkyl or alkoxylated alkyl where the alkoxy is C2-4, (b) a C4-24 cycloalkyl, (c) a C7-24 alkaryl, (d) a repeating or nonrepeating alkoxy or alkoxylated alcohol, where the alkoxy unit is C2-4, or (e) -CR2R3C 3BOND N where R2 and R3 are each H, a C1-24 alkyl, cycloalkyl, or alkaryl, or a repeating or nonrepeating alkoxyl or alkoxylated alcohol where the alkoxy unit is C2-4, the R2 and R3 substituents being each H, a C1-24 alkyl, cycloalkyl, or alkaryl, or a repeating or nonrepeating alkoxyl or alkoxylated alcohol where the alkoxy unit is C2-4, Z is in the range of 0 to 10, and wherein Y is an anionic peracid activator. When these are dissolved in an aqueous solution in the presence of an active oxygen source, coactivation will occur for improved bleaching.
Abstract:
Preferred embodiments of the invention are heterocyclic cationic activators with the structure of Formula I FORMULA I wherein A is a saturated ring formed by a plurality of atoms in addition to the N1 atom, the saturated ring atoms including at least one carbon atom and at least one of O, S, and N atoms, the substituent R1 bound to the N1 atom of the Formula I structure including either (a) a C1-24 alkyl or alkoxylated alkyl where the alkoxy is C2-4, (b) a C4-24 cycloalkyl, (c) a C7-24 alkaryl, (d) a repeating or nonrepeating alkoxy or alkoxylated alcohol, where the alkoxy unit is C2-4, or (e) -CR2R3C 3BOND N where R2 and R3 are each H, a C1-24 alkyl, cycloalkyl, or alkaryl, or a repeating or nonrepeating alkoxyl or alkoxylated alcohol where the alkoxy unit is C2-4, the R2 and R3 substituents being each H, a C1-24 alkyl, cycloalkyl, or alkaryl, or a repeating or nonrepeating alkoxyl or alkoxylated alcohol where the alkoxy unit is C2-4, Z is in the range of 0 to 10, and wherein Y is an anionic peracid activator. When these are dissolved in an aqueous solution in the presence of an active oxygen source, coactivation will occur for improved bleaching.
Abstract:
The invention comprises heterocyclic cationic activators with the structure of Formula (I) that are capable of forming a peroxyimidic acid with a source of active oxygen in aqueous solution or being in a peroxyimidic form wherein A, R1, R2, R3, Y, and Z are as defined in the disclosure. The activators of Formula (I) are admixed with another compound selected from anionic species either capable of forming a peracid with a source of active oxygen in aqueous solution, or being in a peracid form, or a non-ionic polarizable activator and suitable counterion.
Abstract:
Nitrile activators, such as N-alkyl ammonium acetonitrile activators, are combined with a source of active oxygen as cleaning and bleaching compositions. Preferred activator embodiments of the invention include salts of N-methyl morpholinium acetonitrile, N-butylmorpholinium acetonitrile, N-hexyl morpholinium acetonitrile, and N-octyl morpholinium acetonitrile. A particularly preferred activator embodiment is an N-methyl morpholinium acetonitrile salt. The nitrile and active oxygen react to form a bleaching agent which is applied to a stain on an article. The treated stain is coctacted with dense gas so as to provide substantially non-aqueous stain removal. One embodiment is a composition in which the nitrile and active oxygen are disposed in the dense carbon dioxide.