Abstract:
Disclosed herein is a viscoelastic oxidizing formulation comprising, in aqueous solution: an effective amount of an oxidizing compound; a thickening system which comprises (i) at least one alkali metal soap and (ii) a hydrotrope selected from the group consisting of amine oxides, betaines and mixtures thereof, each in amounts appropriate to create a viscoelastic composition having a Zero-shear viscosity in the range of 140-265 cP; a Stress ½ value greater than 10 Pa and a Relaxation constant greater than 0.05 second; and a buffer/electrolyte in an amount effective to stabilize the oxidizing compound. The oxidizing formulations may further be formulated to have an oxidant stable opacifier or colorant.
Abstract:
A cleaning composition with a limited number of natural ingredients contains alkyl polyglucoside, ethanol and colloidal silica. The cleaning composition optionally has a small amount of glycerol. The cleaning composition optionally has a small amount of fragrance. The cleaning composition can be used to clean hard surfaces and cleans as well or better than commercial compositions containing synthetically derived cleaning agents.
Abstract:
A cleaning composition with a limited number of natural ingredients contains alkyl polyglucoside and ethanol. The cleaning composition optionally contains glycerol. The cleaning composition optionally contains essential oil. The cleaning composition optionally has a small amount of buffer, such as a natural inorganic buffer. The cleaning composition can be used to clean hard surfaces and cleans as well or better than commercial compositions containing synthetically derived cleaning agents.
Abstract:
A cleaning composition with a limited number of natural ingredients contains alkyl polyglucoside, ethanol and colloidal silica. The cleaning composition optionally has a small amount of glycerol. The cleaning composition optionally has a small amount of fragrance. The cleaning composition can be used to clean hard surfaces and cleans as well or better than commercial compositions containing synthetically derived cleaning agents.
Abstract:
Sequestering agents for use as a whitening and fabric strength enhancer for aqueous hypochlorite bleach compositions are provided. It was found that the sequesterants when used with hypochlorite in the presence of soluble heavy metal ions, particularly iron and manganese ions, provide significantly improved whitening and fabric protection. Most preferably, the sequesterants are selected from polyacrylic acid, a polyacrylic acid derivative, a copolymer of acrylic acid or methacrylic acid and a comonomer which is maleic acid or maleic anhydride and mixtures thereof. In one aspect, the sequesterants are employed in a method for laundering fabrics comprising: a) providing, in a wash liquor containing (i) at least about 40 ppb of iron cations or (ii) at least about 10 ppb of manganese cations, or (iii) the cations of both (i) and (ii), and a fabric piece; and b) adding either prior to, contemporaneously with, or after, the step of providing of said fabric piece to said wash liquor a hypochlorite composition which comprises one or more of said sequesterants. Preferably the sequesterant comprises at least 0.1 ppm by weight of said wash liquor and the hypochlorite composition is an alkali metal hypochlorite and said sequesterant has a molecular weight of between about 500 and 500,000 daltons.
Abstract:
The invention comprises heterocyclic cationic activators with the structure of Formula (I) that are capable of forming a peroxyimidic acid with a source of active oxygen in aqueous solution or being in a peroxyimidic form wherein A, R1, R2, R3, Y, and Z are as defined in the disclosure. The activators of Formula (I) are admixed with another compound selected from anionic species either capable of forming a peracid with a source of active oxygen in aqueous solution, or being in a peracid form, or a non-ionic polarizable activator and suitable counterion.
Abstract:
Nitrile activators, such as N-alkyl ammonium acetonitrile activators, are combined with a source of active oxygen as cleaning and bleaching compositions. Preferred activator embodiments of the invention include salts of N-methyl morpholinium acetonitrile, N-butylmorpholinium acetonitrile, N-hexyl morpholinium acetonitrile, and N-octyl morpholinium acetonitrile. A particularly preferred activator embodiment is an N-methyl morpholinium acetonitrile salt. The nitrile and active oxygen react to form a bleaching agent which is applied to a stain on an article. The treated stain is coctacted with dense gas so as to provide substantially non-aqueous stain removal. One embodiment is a composition in which the nitrile and active oxygen are disposed in the dense carbon dioxide.