Abstract:
A method and apparatus for operating tightly coupled mirrored processors in a computer system. A plurality of CPU boards are coupled to a processor/memory bus, commonly called a host bus. Each CPU board includes a processor as well as various ports, timers, and interrupt controller logic local to the respective processor. The processors on one or more CPU boards are designated as master processors, with the processors on the remaining CPU boards being designated as mirroring or slave processors. A master processor has full access to the host bus and a second, multiplexed bus for read and write cycles, whereas the slave processors are prevented from writing to any bus. The slave processors compare write data and various control signals with that generated by its respective master processor for disparities. The system includes interrupt controller synchronization logic to synchronize interrupt requests as well as timer synchronization logic to synchronize the timers in each of the master and slave CPUs to guarantee that the master and slave CPUs operate in lockstep.
Abstract:
Three prioritization schemes for determining which of several CPUs receives priority to become bus master of a host bus in a multiprocessor system, and an arbitration scheme for transferring control from one bus master to another. Each prioritization scheme prioritizes n elements, where a total of (n/2)x(n-1) priority bits monitors the relative priority between each pair of elements. An element receives the highest priority when each of the n-1 priority bits associated with that element points to it. In the arbitration scheme, the current bus master of the host bus determines when transfer of control of the host bus occurs as governed by one of the prioritization schemes. The arbitration scheme gives EISA bus masters, RAM refresh and DMA greater priority than CPUs acting as bus masters, and allows a temporary bus master to interrupt the current bus master to perform a write-back cache intervention cycle. The arbitration scheme also supports address pipelining, bursting, split transactions and reservations of CPUs aborted when attempting a locked cycle. Address pipelining allows the next bus master to assert its address and status signals before the beginning of the data transfer phase of the next bus master. Split transactions allow a CPU posting a read to the EISA bus to arbitrate the host bus to another device without re-arbitrating for the host bus to retrieve the data. The data is asserted on the host bus when it is idle even if the host bus is being controlled by another device.
Abstract:
Three prioritization schemes for determining which of several CPUs receives priority to become bus master of a host bus in a multiprocessor system, and an arbitration scheme for transferring control from one bus master to another. Each prioritization scheme prioritizes n elements, where a total of (n/2)x(n-1) priority bits monitors the relative priority between each pair of elements. An element receives the highest priority when each of the n-1 priority bits associated with that element points to it. In the arbitration scheme, the current bus master of the host bus determines when transfer of control of the host bus occurs as governed by one of the prioritization schemes. The arbitration scheme gives EISA bus masters, RAM refresh and DMA greater priority than CPUs acting as bus masters, and allows a temporary bus master to interrupt the current bus master to perform a write-back cache intervention cycle. The arbitration scheme also supports address pipelining, bursting, split transactions and reservations of CPUs aborted when attempting a locked cycle. Address pipelining allows the next bus master to assert its address and status signals before the beginning of the data transfer phase of the next bus master. Split transactions allow a CPU posting a read to the EISA bus to arbitrate the host bus to another device without re-arbitrating for the host bus to retrieve the data. The data is asserted on the host bus when it is idle even if the host bus is being controlled by another device.
Abstract:
Three prioritization schemes for determining which of several CPUs receives priority to become bus master of a host bus in a multiprocessor system, and an arbitration scheme for transferring control from one bus master to another. Each prioritization scheme prioritizes n elements, where a total of (n/2)x(n-1) priority bits monitors the relative priority between each pair of elements. An element receives the highest priority when each of the n-1 priority bits associated with that element points to it. In the arbitration scheme, the current bus master of the host bus determines when transfer of control of the host bus occurs as governed by one of the prioritization schemes. The arbitration scheme gives EISA bus masters, RAM refresh and DMA greater priority than CPUs acting as bus masters, and allows a temporary bus master to interrupt the current bus master to perform a write-back cache intervention cycle. The arbitration scheme also supports address pipelining, bursting, split transactions and reservations of CPUs aborted when attempting a locked cycle. Address pipelining allows the next bus master to assert its address and status signals before the beginning of the data transfer phase of the next bus master. Split transactions allow a CPU posting a read to the EISA bus to arbitrate the host bus to another device without re-arbitrating for the host bus to retrieve the data. The data is asserted on the host bus when it is idle even if the host bus is being controlled by another device.
Abstract:
Three prioritization schemes for determining which of several CPUs receives priority to become bus master of a host bus in a multiprocessor system, and an arbitration scheme for transferring control from one bus master to another. Each prioritization scheme prioritizes n elements, where a total of (n/2)x(n-1) priority bits monitors the relative priority between each pair of elements. An element receives the highest priority when each of the n-1 priority bits associated with that element points to it. In the arbitration scheme, the current bus master of the host bus determines when transfer of control of the host bus occurs as governed by one of the prioritization schemes. The arbitration scheme gives EISA bus masters, RAM refresh and DMA greater priority than CPUs acting as bus masters, and allows a temporary bus master to interrupt the current bus master to perform a write-back cache intervention cycle. The arbitration scheme also supports address pipelining, bursting, split transactions and reservations of CPUs aborted when attempting a locked cycle. Address pipelining allows the next bus master to assert its address and status signals before the beginning of the data transfer phase of the next bus master. Split transactions allow a CPU posting a read to the EISA bus to arbitrate the host bus to another device without re-arbitrating for the host bus to retrieve the data. The data is asserted on the host bus when it is idle even if the host bus is being controlled by another device.
Abstract:
Three prioritization schemes for determining which of several CPUs receives priority to become bus master of a host bus in a multiprocessor system, and an arbitration scheme for transferring control from one bus master to another. Each prioritization scheme prioritizes n elements, where a total of (n/2)x(n-1) priority bits monitors the relative priority between each pair of elements. An element receives the highest priority when each of the n-1 priority bits associated with that element points to it. In the arbitration scheme, the current bus master of the host bus determines when transfer of control of the host bus occurs as governed by one of the prioritization schemes. The arbitration scheme gives EISA bus masters, RAM refresh and DMA greater priority than CPUs acting as bus masters, and allows a temporary bus master to interrupt the current bus master to perform a write-back cache intervention cycle. The arbitration scheme also supports address pipelining, bursting, split transactions and reservations of CPUs aborted when attempting a locked cycle. Address pipelining allows the next bus master to assert its address and status signals before the beginning of the data transfer phase of the next bus master. Split transactions allow a CPU posting a read to the EISA bus to arbitrate the host bus to another device without re-arbitrating for the host bus to retrieve the data. The data is asserted on the host bus when it is idle even if the host bus is being controlled by another device.