Abstract:
A catalytic hydrocarbon reformer comprising a catalyst concentrically disposed within a reformer tube surrounded by an annular flow space for air entering a fuel-air mixing zone ahead of the catalyst. The catalyst is sustained by minimal insulative mounting material so that most of the side of the catalyst is exposed for radial radiative heat transfer to the reformer tube for cooling by air in the annular flow space. The forward portion of the mounting material preferably is formed of a thermally-conductive material to provide radial conductive cooling of the entry of the catalyst to prevent overheating during catalysis. The incoming air flow is protected from heat exchange with hot reformate exiting the catalyst, allowing for convective cooling of the catalyst side and greater cooling of the catalyst face, thus increasing the working life of the catalyst while providing for rapid startup of the reformer and associated fuel cell system.
Abstract:
In one embodiment, a fuel reformer 100 can comprise: a mixing zone 26 capable of mixing a fuel and an oxidant to form a fuel mixture 32 and a reforming zone 28 disposed downstream of the mixing zone 26. The reforming zone 28 comprises a primary substrate 18 and a secondary substrate 20. The primary substrate 18 is disposed upstream of the secondary substrate 20 and has a primary thermal mass that is greater than a secondary thermal mass of the secondary substrate 20. One embodiment of a method for operating a fuel reformer 100 can comprise: mixing an oxidant and a fuel to form a fuel mixture 32, combusting the fuel mixture 32, heating the secondary substrate 20 above its light-off temperature, changing an air to fuel ratio of the fuel mixture 32 to a reforming mixture, producing an exotherm and a reformate at the secondary substrate 20, heating a primary substrate 18 with the exotherm to above its light-off temperature, and producing a reformate.
Abstract:
A catalytic hydrocarbon reformer comprising a catalyst concentrically disposed within a reformer tube surrounded by an annular flow space for air entering a fuel-air mixing zone ahead of the catalyst. The catalyst is sustained by minimal insulative mounting material so that most of the side of the catalyst is exposed for radial radiative heat transfer to the reformer tube for cooling by air in the annular flow space. The forward portion of the mounting material preferably is formed of a thermally-conductive material to provide radial conductive cooling of the entry of the catalyst to prevent overheating during catalysis. The incoming air flow is protected from heat exchange with hot reformate exiting the catalyst, allowing for convective cooling of the catalyst side and greater cooling of the catalyst face, thus increasing the working life of the catalyst while providing for rapid startup of the reformer and associated fuel cell system.
Abstract:
A reformer system (100, 200) comprises a reformer catalyst capable of reforming a fuel to hydrogen and carbon monoxide, and a water gas shift catalyst in fluid communication with the reformer catalyst and in fluid communication with an exhaust gas source comprising water, wherein the water gas shift catalyst is capable of reacting carbon monoxide with the water to produce hydrogen and carbon dioxide.
Abstract:
Disclosed herein are methods for operating a reformer and for operating a vehicle. In one embodiment, the method for operating the reformer comprises: introducing an oxidant and fuel to a reformer at greater than or equal to about 25,000/hr space velocity; combusting the oxidant and the fuel the reformer to produce a combustion gas, wherein the reformer comprises a reformer substrate comprising a reformer catalyst and having a thermal conductivity of greater than or equal to about 35 W/m°K; extinguishing the combustion; and introducing additional fuel and oxidant to the reformer at an air to fuel weight ratio appropriate for reforming. A method of using the reformate produced to reduce cold start emissions and/or regenerate an exhaust control device is also disclosed.
Abstract:
An internal combustion engine is supplied with reformate from a hydrocarbon reformer at engine start-up and during engine warm-up. The reformate fuel mixture is fuel-lean at start-up to ensure that all the fuel is burned while the exhaust converter is thermally non-functional. Shortly after start-up, the mixture is changed to be fuel-rich, providing unburned reformate fuel in the exhaust stream. During start-up and warm-up, the output of an air pump is controllably divided between the reformer (primary air) and the engine exhaust system (secondary air). Unburned reformate from the engine and secondary air from the air pump ignite and thereby rapidly heat the converter. Gasoline or diesel fueling of the engine by fuel injection is preferably delayed until the engine and the converter both reach operating temperatures, whereupon the engine is fueled by fuel injection and further reforming is terminated.
Abstract:
A fast start-up catalytic reformer (50) for producing hydrogen-rich reformate from hydrocarbon fuel includes a reactor (10) having an inlet (62,64) for receiving a flow of fuel and a flow of air, a reforming catalyst (16) disposed within a reforming chamber in the reactor, and an outlet (20) for discharging the produced reformate stream. An ignition device (68) within the reactor tube ignites a first lean mixture in combustion mode to generate exhaust gases to warm the catalyst which also warms the wall of the reactor adjacent the catalyst. The reactor then switches over to a rich fuel/air mixture during reforming mode. A jacket (54) concentrically surrounds the reactor, defining a mixing chamber (58) therebetween which communicates with the reforming chamber via openings (60) in the wall of the reactor. Fuel entering the reformer in combustion mode is injected directly into the reforming chamber to provide rapid warming of the catalyst. Fuel entering the reformer in reforming mode is sprayed onto the outside of the reactor in the mixing chamber, preferably in the heated region of the tube for very rapid vaporization.
Abstract:
A catalytic reformer assembly and methods of operation, including fast start-up, are provided. The reformer assembly includes an electrically-conductive metallic vaporizer having a very high surface area. At start-up of the reformer, electric current is passed through the vaporizer to heat the material by resistance heating, providing a high-temperature, high-surface area environment for fuel vaporization. Preferably, the electric current is started a few seconds before starting fuel flow. The fuel is sprayed either onto or through the heated vaporizer, preferably before the fuel is mixed with incoming air to minimize convective cooling by the air and to reduce the pressure drop in the fuel flow. As the reformer warms up, energy from the reforming process heats the vaporizer via radiation and/or conduction such that electric power is needed only during the start-up phase. A control circuit regulates the amount and duration of electric power supplied to the vaporizer.