Abstract:
A method of manufacturing a light-emitting device includes: providing a substrate; forming a light-emitting structure comprising an active layer on the substrate; forming a protective layer having a first thickness on the light-emitting structure; etching the protective layer such that the protective layer has a second thickness less than the first thickness; and patterning the protective layer.
Abstract:
A manufacturing method of a light-emitting device is disclosed. The method includes: providing a semiconductor wafer, including a substrate having a first surface and a second surface opposite to the first surface; and a semiconductor stack on the first surface; removing a portion of the semiconductor stack to form an exposed region; forming a first reflective structure on the exposed region; and providing a radiation on the second surface corresponding to a position of the first reflective structure.
Abstract:
A method for manufacturing a light-emitting device comprising the steps of: providing a substrate; forming a semiconductor epitaxial stack on the substrate; and forming multiple isolation trenches in the semiconductor epitaxial stack by using a laser beam irradiating the semiconductor epitaxial stack to define multiple light-emitting diode units wherein partial of the substrate is exposed by the isolation trenches.
Abstract:
A metal recycling method comprises attaching a tape to a metal layer of a semiconductor structure; and separating a part of the metal layer from the semiconductor structure and transferring the part of the metal layer to the tape by a pressure difference.
Abstract:
A light-emitting device is disclosed. The light-emitting device comprises a substrate; a barrier; a light-emitting structure formed between the substrate and the barrier, comprising a first region and a second region on a same plane; and a transparent conductive layer formed on the barrier layer and the second region; wherein the barrier layer is formed on the first region, the barrier layer has a sidewall and a bottom surface facing the first region; wherein an angle between the sidewall and the bottom surface is between 10°-70°.
Abstract:
A light-emitting element, comprises: a substrate; a light-emitting semiconductor stack over the substrate and comprising an active layer; and a Distributed Bragg reflective unit under the substrate comprising a first Distributed Bragg reflective structure under the substrate and comprising a first number of pairs of alternately stacked first sub-layers and second sub-layers, and a second Distributed Bragg reflective structure under the first Distributed Bragg reflective structure and comprising a second number of pairs of alternately stacked third sub-layers and fourth sub-layers, wherein the first number is different from the second number.
Abstract:
A light-emitting device, includes: a semiconductor stack, including a top surface, wherein the top surface includes a first region and a second region which are coplanar; a current barrier layer formed on the first region, wherein the current barrier layer includes an insulating material; and a transparent conductive layer formed on the current barrier layer and the second region; and a first electrode formed on the transparent conductive layer; wherein the current barrier layer includes: an electrode region at a position corresponding to the first electrode, having a shape substantially the same as the first electrode; and a plurality of extension regions extending from the electrode region and not covered by the first electrode.