Abstract:
A method of localized plasma processing improves processing speed and reduces work piece damage compared to charged particle beam deposition and etching. In one embodiment, a plasma jet exits a plasma generating chamber and activates a reactive gas. A jet of plasma and reactive gas impacts and processes the work piece. Because the plasma and the ions in the reactive gas can have low kinetic energy, there can be little or no surface damage. This is particularly useful for deposition processes. When it is desired to etch material, the reactive ions can be more energetic to enhance etching.
Abstract:
A method and system for improved planar deprocessing of semiconductor devices using a focused ion beam system. The method comprises defining a target area to be removed, the target area including at least a portion of a mixed copper and dielectric layer of a semiconductor device; directing a precursor gas toward the target area; and directing a focused ion beam toward the target area in the presence of the precursor gas, thereby removing at least a portion of a first mixed copper and dielectric layer and producing a uniformly smooth floor in the milled target area. The precursor gas causes the focused ion beam to mill the copper at substantially the same rate as the dielectric. In a preferred embodiment, the precursor gas comprises methyl nitroacetate. In alternative embodiments, the precursor gas is methyl acetate, ethyl acetate, ethyl nitroacetate, propyl acetate, propyl nitroacetate, nitro ethyl acetate, methyl methoxyacetate, or methoxy acetylchloride.
Abstract:
A method and system for improved planar deprocessing of semiconductor devices using a focused ion beam system. The method comprises defining a target area to be removed, the target area including at least a portion of a mixed copper and dielectric layer of a semiconductor device; directing a precursor gas toward the target area; and directing a focused ion beam toward the target area in the presence of the precursor gas, thereby removing at least a portion of a first mixed copper and dielectric layer and producing a uniformly smooth floor in the milled target area. The precursor gas causes the focused ion beam to mill the copper at substantially the same rate as the dielectric. In a preferred embodiment, the precursor gas comprises methyl nitroacetate. In alternative embodiments, the precursor gas is methyl acetate, ethyl acetate, ethyl nitroacetate, propyl acetate, propyl nitroacetate, nitro ethyl acetate, methyl methoxyacetate, or methoxy acetylchloride.
Abstract:
A method of localized plasma processing improves processing speed and reduces work piece damage compared to charged particle beam deposition and etching. In one embodiment, a plasma jet exits a plasma generating chamber and activates a reactive gas. A jet of plasma and reactive gas impacts and processes the work piece. Because the plasma and the ions in the reactive gas can have low kinetic energy, there can be little or no surface damage. This is particularly useful for deposition processes. When it is desired to etch material, the reactive ions can be more energetic to enhance etching.