Abstract:
A method utilizing localized amorphization and recrystallization of stacked template layers is provided for making a planar substrate having semiconductor layers of different crystallographic orientations. Also provided are hybrid-orientation semiconductor substrate structures built with the methods of the invention, as well as such structures integrated with various CMOS circuits comprising at least two semiconductor devices disposed on different surface orientations for enhanced device performance.
Abstract:
PROBLEM TO BE SOLVED: To provide a method of forming a bonding interface between Si having characteristics equal to that attained by hydrophobic bonding by removing an ultra thin interface oxide remaining after hydrophobic wafer bonding between Si. SOLUTION: The interface oxide layer in the order of about 2-3 nm is dissolved and removed by, for example, high temperature annealing at 1,300-1,330°C only for 1-5 hours. The invention is most effectively used if the Si surface of a bonding interface has a different surface orientation as, for example, the Si surface with (100) orientation is bonded to the Si surface with (110) orientation. In more generous modes of this invention, an undesired material arranged on the bonding interface of two silicon-contained semiconductor materials can be removed by a similar annealing process. The surface crystal orientation, fine structure (single crystal, polycrystal, or amorphous), and elements of two silicon-contained semiconductor materials may or may not be identical. COPYRIGHT: (C)2006,JPO&NCIPI
Abstract:
PROBLEM TO BE SOLVED: To provide a method for amorphization/template re-crystallization for changing orientation in the selected region of a silicon, without remaining defect of high density, by preparing an anneal process optimized to remove defects caused by damage due to injection, in a single crystal silicon. SOLUTION: The region of Si having a first crystal orientation is amorphised by iron-implantation, and is re-crystallized into the orientation of a template layer having different orientation, in an amorphising/template re-crystallization (ATR) process. A reoriented Si of low defective density in the process is formed by this method. More specifically, the invention relates to a high temperature annealing condition required for eliminating defects remaining in an Si-contained single crystal semiconductor material formed of the layer whose orientation is identical or different from the original orientation of amorphous layer by amorphising caused by ion-implantation and template re-crystallization. The main factor of that is a thermal process for removing defects remaining after initial re-crystallization annealing, in the temperature range of 1,250-1,330°C for several minutes to several hours. A reoriented Si of low defective density, formed by ATR, is provided as well for use with a hybrid orientation substrate. COPYRIGHT: (C)2006,JPO&NCIPI
Abstract:
PROBLEM TO BE SOLVED: To provide an improved bipolar junction transistor (BJT) characterized in that the parasitic capacitance has been reduced without reduction in base resistance accompanying the reduction in the parasitic capacitance, and to provide a method of forming the same. SOLUTION: The collector region of each BJT is arranged in the surface of a semiconductor substrate and adjacent to a first shallow trench isolation (STI) region. A second STI region is formed while the second STI region extends between the first STI region and the collector region, and undercuts a part of an active base region with an undercut angle of about 90° or less. For example, the second STI region may have a section with a substantially triangular shape with an undercut angle of less than about 90° or a section with a substantially rectangular shape with an undercut angle of about 90°. Such a second STI region can be manufactured using a porous surface part formed in the upper side surface of the collector region. COPYRIGHT: (C)2007,JPO&INPIT
Abstract:
PROBLEM TO BE SOLVED: To provide a method of manufacturing a device on a crystal of orientation which brings about optimal performance by providing separation by an oxygen implantation (SIMOX) method for the formation of a flat hybrid orientation semiconductor on insulator (SOI) substrate having a crystal of different orientation. SOLUTION: A method comprises steps of: selecting a substrate having a lower semiconductor layer having first crystal orientation separated from an upper semiconductor layer having second crystal orientation by a thin insulating layer; replacing the upper semiconductor layer of a selected region with epitaxial growth semiconductor having the first crystal orientation; (i) forming a padding insulating region in an epitaxial growth semiconductor material and (ii) thickening an insulating layer under the upper semiconductor layer using ion implantation and annealing methods; and forming a hybrid orientation substrate in which two semiconductor materials of different crystal orientation have substantially identical thickness and are arranged on the common padding insulating layer. COPYRIGHT: (C)2006,JPO&NCIPI
Abstract:
Phasenänderungsspeicher-Einheit, die aufweist:eine dielektrische Schicht;eine untere Elektrode, die in der dielektrischen Schicht angeordnet ist;ein Liner-Material, das auf der unteren Elektrode angeordnet ist, wobei das Liner-Material des Weiteren eine aus Al gebildete Metallschicht aufweist, die über einer Dünnschicht aus einem leitfähigen Oxid angeordnet ist;ein Phasenänderungsmaterial, das auf dem Liner-Material angeordnet ist; undeine obere Elektrode, die auf dem Phasenänderungsmaterial und in der dielektrischen Schicht angeordnet ist.
Abstract:
sEine Halbleiter-Einheit beinhaltet ein Substrat und eine p-dotierte Schicht, die ein dotiertes III-V-Material beinhaltet, auf dem Substrat. Ein Material vom n-Typ ist auf oder in der p-dotierten Schicht ausgebildet. Die Schicht vom n-Typ beinhaltet ZnO. Ein Kontakt aus Aluminium ist in direktem Kontakt zu dem ZnO des Materials vom n-Typ ausgebildet, um eine elektronische Einheit zu bilden.
Abstract:
Eine Phasenänderungsspeicher(PCM)-Einheit weist auf: eine dielektrische Schicht, eine untere Elektrode, die in der dielektrischen Schicht angeordnet ist, ein Liner-Material, das auf der unteren Elektrode angeordnet ist, ein Phasenänderungsmaterial, das auf dem Liner-Material angeordnet ist, sowie eine obere Elektrode, die auf dem Phasenänderungsmaterial und in der dielektrischen Schicht angeordnet ist.
Abstract:
Halbleiter-Einheit, die aufweist:ein Substrat (42);eine p-dotierte Schicht (44), die ein dotiertes III-V-Material beinhaltet, auf dem Substrat;ein Material vom n-Typ (46), das auf oder in der p-dotierten Schicht (44) ausgebildet ist, wobei das Material vom n-Typ ein dotiertes III-V-Material beinhaltet; undeinen Kontakt (66), der auf dem Material vom n-Typ (46) ausgebildet ist und eine Zwischenschicht (48), die aus ZnO gebildet ist, sowie einen Teilbereich (51) aus Aluminium beinhaltet, der in direktem Kontakt zu dem ZnO der Zwischenschicht (48) ausgebildet ist, um eine elektronische Einheit zu bilden, wobei die Zwischenschicht (48) und der Teilbereich (51) aus Aluminium zusammen strukturiert werden, um den Kontakt zu bilden.