Abstract:
PROBLEM TO BE SOLVED: To extend the possibility of local formation or modification of a pattern of specific magnetization direction in a planar magnetic surface or in a magnetic film and to obtain an improved magnetic storage and recording device having one or more surfaces in which such patterns are formed. SOLUTION: A method for locally forming or modifying a pattern of specific magnetization modification in an at least potentially ferromagnetic surface includes a step for forming a prescribed pattern of discrete magnetization regions on the magnetic surface preferably by exposing the magnetic surface to the bombardment of activated subatom corpuscles directed toward the magnetic surface in the form of electron beams. The method increases the density of information magnetically encoded on a magnetic medium such as a hard disk.
Abstract:
PROBLEM TO BE SOLVED: To provide a probe and a data storage device, requiring less power consumption. SOLUTION: The data storage device includes a storage medium for storing data in a form of marks, and at least one probe for scanning this storage medium, and the storage medium can be included in the substrate. The probe contains a cantilever including a terminal, where this terminal functions as an electrical contact to mechanically be fixed on a probe retention structure, which can be a common frame of the data storage device during probe operation. The probe also contains a support structure, to which it mechanically connects the terminal directly or via a hinge. This support structure extends so as to separate from the terminal. The end section having a nano-scaled vertex is provided. A beam structure, which contains a heat resistor, is installed at the end section of the support structure. This beam structure is thinner than the area of the support structure, directly contacting the beam structure in at least the direction parallel to the shaft of the end section. COPYRIGHT: (C)2006,JPO&NCIPI
Abstract:
The present invention relates to a device for forming topographic features on a surface of a polymer layer comprising: a polymer layer (1 ); a substrate (2) comprising a conductor, a first surface (1 a) of the polymer layer (1 ) being provided on the substrate (2); and at least one electrode (3) which, when the device is in use, interacts with a second surface (1 b) of the polymer layer (1 ), wherein, when in use, the device is operable to apply a first electrical potential (P1 ) to the at least one electrode (3) relative to the substrate (2), thereby to cause a protrusion (4) to be formed on the second surface (1 b) of the polymer layer (1 ).
Abstract:
The invention concerns a method for scanning a surface (52) of a material (50) with a scanning probe microscope or SPM (10), the SPM having a cantilever sensor (100) configured to exhibit distinct spring behaviors (C, Ck), the method comprising: - operating the SPM in contact mode, whereby the sensor is scanned on the material surface and a first spring behavior (C) of the sensor (e.g. a fundamental mode of flexure thereof) is excited by deflection of the sensor by the material surface; and - exciting with excitation means a second spring behavior (Ck) of the sensor at a resonance frequency thereof (e.g. one or more higher-order resonant modes) of the cantilever sensor to modulate an interaction of the sensor and the material surface and thereby reduce the wearing of the material surface.
Abstract:
A microsystem, comprising a first static element (1), a second, movable and unattached element (2), an actuator (3) for effecting a force between the first and the second element (1, 2), which actuator (3) is designed for controlling a temperature (T1, T2) of one of the first element (1) and the second element (2). A corresponding method for positioning a second element (2) with respect to a first element (1) in a microsystem is introduced.
Abstract:
Apparatus for detecting data in a sensor signal generated by a read sensor in a local probe data storage device comprises a differentiation for subtracting a value of the sensor signal from the succeeding value of the sensor signal to generate a ternary difference signal ; and a convertor connected to the differentiator for converting the difference signal into a binary output signal indicative of the detected data. A local probe data storage device comprising such apparatus is also described.
Abstract:
Die vorliegende Erfindung betrifft insbesondere Vorrichtungen und Verfahren zur Positionierung von Nanoobjekten (20) auf einer Oberfläche. Das Verfahren weist auf: Bereitstellen (S10 bis S50) zweier einander gegenüberliegender Oberflächen (15, 17) einschließlich einer ersten Oberfläche (15) und einer zweiten Oberfläche (17), wobei mindestens eine der zwei Oberflächen eine oder mehrere Positionierungsstrukturen (16, 16a) mit Abmessungen im Nanometerbereich aufweist; und einer ionischen Flüssigkeitssuspension (30) der Nanoobjekte zwischen den zwei Oberflächen, wobei jede der Oberflächen mit der ionischen Flüssigkeitssuspension eine elektrische Doppelschicht bildet, wobei jede der zwei Oberflächen ein selbes elektrisches Ladungsvorzeichen aufweist; und Sich-positionieren-lassen (S60) der Nanoobjekte in der Suspension einer Potenzialenergie (31) gemäß, die aus der elektrischen Ladung der zwei Oberflächen resultiert, und Abscheiden (S70) eines oder mehrerer der Nanoobjekte auf der ersten Oberfläche den Positionierungsstrukturen gemäß durch Verschieben von Minima (32) der Potenzialenergie zur ersten Oberfläche hin.
Abstract:
Die Erfindung betrifft ein Verfahren zum Abtasten einer Oberfläche (52) aus einem Material (50) mit einem Rastersondenmikroskop (SPM) (10), wobei das SPM einen Hebelarmsensor (100) aufweist, der so aufgebaut ist, dass er verschiedene Federverhaltensweisen (C, Ck) aufweist, und wobei das Verfahren die folgenden Schritte umfasst: – Betreiben des SPM im Kontaktmodus, wobei der Sensor die Materialoberfläche rasterförmig abtastet und durch Auslenken des Sensors durch die Materialoberfläche ein erstes Federverhalten (C) des Sensors (z. B. ein Grundbiegemodus des Sensors) bewirkt wird; und – Anregen eines zweiten Federverhaltens (Ck) des Sensors mit einem Anregungsmittel bei einer Resonanzfrequenz (z. B. eines oder mehrerer Resonanzmodi höherer Ordnung) des Hebelarmsensors, um eine Wechselwirkung zwischen dem Sensor und der Materialoberfläche zu modulieren und dadurch den Verschleiß der Materialoberfläche zu verringern.
Abstract:
DESCRIBED IS A METHOD FOR READING AN ARRAY OF SENSORS (10) HAVING A SET OF ROW CONDUCTORS (60) EACH CONNECTED TO THE SENSORS IN A CORRESPONDING ROW OF THE ARRAY AND A SET OF COLUMN CONDUCTORS (50) EACH CONNECTED TO THE SENSORS IN A CORRESPONDING COLUMN OF THE ARRAY SUCH THAT EACH SENSOR IS CONNECTED BETWEEN A ROW CONDUCTOR AND A COLUMN CONDUCTOR. THE METHOD COMPRISES: FOR EACH ROW OF SENSORS IN THE ARRAY, PERFORMING A READ CYCLE (TR) COMPRISING APPLYING AN ACTIVATION PULSE (UB) TO THE CORRESPONDING ROW CONDUCTOR TO ACTIVATE THE SENSORS IN THE ROW, APPLYING A READING PULSE (UR) TO THE ROW CONDUCTOR ON EXPIRY OF A PREDETERMINED TIME INTERVAL FROM AN EDGE OF THE ACTIVATION PULSE, AND DURING THE READING PULSE, DETECTING, FOR EACH SENSOR IN THE ROW, A VALUE DEPENDENT ON A VARIABLE CHARACTERISTIC OF THAT SENSOR. THE READ CYCLE FOR AT LEAST ONE ROW IS COMMENCED DURING THE PREDETERMINED TIME INTERVAL OF THE READ CYCLE FOR ANOTHER ROW. IN A PREFERRED EXAMPLE DESCRIBED IN DETAIL, THE SENSORS ARE THERMAL RESISTANCE SENSORS, THE ACTIVATION PULSE IS A HEATING PULSE TO HEAT THE SENSORS, AND THE VARIABLE CHARACTERISTIC IS RESISTANCE.(FIG.1)