Abstract:
The present invention relates to a device for forming topographic features on a surface of a polymer layer comprising: a polymer layer (1 ); a substrate (2) comprising a conductor, a first surface (1 a) of the polymer layer (1 ) being provided on the substrate (2); and at least one electrode (3) which, when the device is in use, interacts with a second surface (1 b) of the polymer layer (1 ), wherein, when in use, the device is operable to apply a first electrical potential (P1 ) to the at least one electrode (3) relative to the substrate (2), thereby to cause a protrusion (4) to be formed on the second surface (1 b) of the polymer layer (1 ).
Abstract:
The invention concerns a method for scanning a surface (52) of a material (50) with a scanning probe microscope or SPM (10), the SPM having a cantilever sensor (100) configured to exhibit distinct spring behaviors (C, Ck), the method comprising: - operating the SPM in contact mode, whereby the sensor is scanned on the material surface and a first spring behavior (C) of the sensor (e.g. a fundamental mode of flexure thereof) is excited by deflection of the sensor by the material surface; and - exciting with excitation means a second spring behavior (Ck) of the sensor at a resonance frequency thereof (e.g. one or more higher-order resonant modes) of the cantilever sensor to modulate an interaction of the sensor and the material surface and thereby reduce the wearing of the material surface.
Abstract:
The present invention is notably directed to apparatuses and methods for positioning nano- objects (20) on a surface. The method comprises: providing (S10 S50) two surfaces (15, 17) including a first surface (15) and a second surface (17) in vis-Ã -vis, wherein at least one of the two surfaces exhibits one or more positioning structures (16, 16a) having dimensions on the nanoscale; and a ionic liquid suspension (30) of the nano-objects between the two surfaces, wherein each of the surfaces forms an electrical double layer with the ionic liquid suspension, each of the two surfaces having a same electrical charge sign; and letting (S60) nano-objects in the suspension position according to a potential energy (31) resulting from the electrical charge of the two surfaces and depositing (S70) one or more of the nano-objects on the first surface according to the positioning structures, by shifting minima (32) of the potential energy towards the first surface.
Abstract:
Probe-based methods for patterning a surface of a material are described. In particular, high resolution patterning of molecules on a surface of a material, such as nano-scale patterns with feature sizes of less than 30 nanometers, are described. In one aspect, a method for patterning a surface of a material includes providing a material having a polymer film. A heated, nano-scale dimensioned probe is then used to desorb molecules upon interacting with the film. The film includes a network of molecules (such as molecular glasses) which are cross-linked via intermolecular (noncovalent) bonds, such as hydrogen bonds.
Abstract:
The present invention is notably directed to apparatuses and methods for positioning nano- objects (20) on a surface. The method comprises: providing (S10 S50) two surfaces (15, 17) including a first surface (15) and a second surface (17) in vis-à-vis, wherein at least one of the two surfaces exhibits one or more positioning structures (16, 16a) having dimensions on the nanoscale; and a ionic liquid suspension (30) of the nano-objects between the two surfaces, wherein each of the surfaces forms an electrical double layer with the ionic liquid suspension, each of the two surfaces having a same electrical charge sign; and letting (S60) nano-objects in the suspension position according to a potential energy (31) resulting from the electrical charge of the two surfaces and depositing (S70) one or more of the nano-objects on the first surface according to the positioning structures, by shifting minima (32) of the potential energy towards the first surface.
Abstract:
Verfahren zur Positionierung von Nanoobjekten (20) auf einer Oberfläche, wobei das Verfahren aufweist: Bereitstellen (S10 bis S50): zweier einander gegenüberliegender Oberflächen (15, 17) einschließlich einer ersten Oberfläche (15) und einer zweiten Oberfläche (17), wobei mindestens eine der zwei Oberflächen eine oder mehrere Positionierungsstrukturen (16, 16a) mit Abmessungen im Nanometerbereich aufweist; und einer ionischen Flüssigkeitssuspension (30) der Nanoobjekte zwischen den zwei Oberflächen, wobei die Suspension zwei elektrische Doppelschichten aufweist, die jeweils an einer Grenzfläche zu einer jeweiligen der zwei Oberflächen gebildet sind, wobei die elektrischen Oberflächenladungen der zwei Oberflächen dasselbe Vorzeichen haben; und Sich-positionieren-lassen (S60) der Nanoobjekte (20) in der Suspension entsprechend einer potentiellen Energie (31), die aus der elektrischen Ladung der zwei Oberflächen resultiert, und Abscheiden (S70) eines oder mehrerer der Nanoobjekte auf der ersten Oberfläche den Positionierungsstrukturen gemäß durch Verschieben von Minima (32) der potentiellen Energie zur ersten Oberfläche hin.
Abstract:
A method of fabrication of a micro-optics device (1), the method comprising: -providing a layer (300) of material; -patterning said layer of material by locally unzipping and/or desorbing molecules therefore, with a nano-scale dimensione probe, to obtain a curved surface (s2) of layer of material, the curved surface having a curved profile (21, 21', 22) in at leas a plane section ((y, z), (x, z)); and -comprising a layer structure by providing one or more additional layers of material in contact with the curved surface, to obtain the micro-optics device (1), the latter having said layer structure, a given layer (10) therefore comprising a defect (20), said defect delimited by two surfaces, wherein one of said two surface is the curved surface (s2) and said at least one plane section ((y, z), (x, z)) is perpendicular to the layer structure.
Abstract:
Die vorliegende Erfindung bezieht sich insbesondere auf Nanoprägelithographievorrichtungen und -verfahren. Solche Verfahren weisen auf: Bereitstellen (S10): einer Form (100), die ein topographisches Muster (140) auf einer Seite (101) der Form aufweist, wobei das topographische Muster durch Strukturen (130) mit Abmessungen im Nanobereich ausgebildet wird; und einer thermisch zersetzbaren Polymerdünnschicht (210) wie zum Beispiel Poly(phthalaldehyd) auf einem Substrat (220) gegenüber der Seite der Form, wobei die Strukturen über eine Zersetzungstemperatur (Td) der Polymerdünnschicht erwärmt werden; Inkontaktbringen (S20) der Strukturen mit der Polymerdünnschicht, um Abschnitte davon in Übereinstimmung mit den Strukturen thermisch zu zersetzen; und Entfernen (S50) der Strukturen von der Polymerdünnschicht.
Abstract:
The invention concerns a method for scanning a surface (52) of a material (50) with a scanning probe microscope or SPM (10), the SPM having a cantilever sensor (100) configured to exhibit distinct spring behaviors (C, Ck), the method comprising: - operating the SPM in contact mode, whereby the sensor is scanned on the material surface and a first spring behavior (C) of the sensor (e.g. a fundamental mode of flexure thereof) is excited by deflection of the sensor by the material surface; and - exciting with excitation means a second spring behavior (Ck) of the sensor at a resonance frequency thereof (e.g. one or more higher-order resonant modes) of the cantilever sensor to modulate an interaction of the sensor and the material surface and thereby reduce the wearing of the material surface.
Abstract:
Nanoprägelithographieverfahren, das die aufeinander folgenden Schritte aufweist: – Bereitstellen (S10) einer Form (100), die Strukturen (130) mit Abmessungen im Nanometerbereich auf einer Seite (101) der Form (100) aufweist, wobei die Strukturen (130) ein topographisches Muster (140) ausbilden; und – Bereitstellen einer thermisch zersetzbaren Polymerdünnschicht (210) auf einem Substrat (220) gegenüber der Seite (101) der Form (100), – wobei die Strukturen (130) über die Zersetzungstemperatur (Td) der Polymerdünnschicht (210) erwärmt werden; – Inkontaktbringen (S20) der Strukturen (130) mit der Polymerdünnschicht (210), um Abschnitte davon in Übereinstimmung mit den Strukturen (130) thermisch zu zersetzen (S30); und – Entfernen (S50) der Strukturen (130) von der Polymerdünnschicht (210).