Abstract:
The present invention provides a semiconductor material that has enhanced electron and hole mobilities that comprises a -containing layer having a 110 crystal orientation and a biaxial compressive strain. The term ''biaxial compressive stress'' is used herein to describe the net stress caused by longitudinal compressive stress and lateral stress that is induced upon the Si-containing layer during the manufacturing of the semiconductor material. Other aspect of the present invention relates to a method of forming the semiconductor material of the present invention. The method of the present invention includes the steps of providing a silicon-containing 110 layer; and creating a biaxial strain in the silicon-containing 110 layer.
Abstract:
The present invention provides a semiconductor material that has enhanced electron and hole mobilities that comprises a -containing layer having a 110 crystal orientation and a biaxial compressive strain. The term ''biaxial compressive stress'' is used herein to describe the net stress caused by longitudinal compressive stress and lateral stress that is induced upon the Si-containing layer during the manufacturing of the semiconductor material. Other aspect of the present invention relates to a method of forming the semiconductor material of the present invention. The method of the present invention includes the steps of providing a silicon-containing 110 layer; and creating a biaxial strain in the silicon-containing 110 layer.
Abstract:
The present invention provides a semiconductor material that has enhanced electron and hole mobilities that comprises a -containing layer having a 110 crystal orientation and a biaxial compressive strain. The term ''biaxial compressive stress'' is used herein to describe the net stress caused by longitudinal compressive stress and lateral stress that is induced upon the Si-containing layer during the manufacturing of the semiconductor material. Other aspect of the present invention relates to a method of forming the semiconductor material of the present invention. The method of the present invention includes the steps of providing a silicon-containing 110 layer; and creating a biaxial strain in the silicon-containing 110 layer.
Abstract:
The present invention provides a semiconductor material that has enhanced electron and hole mobilities that comprises a Si-containing layer having a crystal orientation and a biaxial compressive strain. The term “biaxial compressive stress” is used herein to describe the net stress caused by longitudinal compressive stress and lateral stress that is induced upon the Si-containing layer during the manufacturing of the semiconductor material. Other aspect of the present invention relates to a method of forming the semiconductor material of the present invention. The method of the present invention includes the steps of providing a silicon-containing layer; and creating a biaxial strain in the silicon-containing layer.