INSTRUCTION FETCH CONTROL SYSTEM IN A COMPUTER

    公开(公告)号:DE2966069D1

    公开(公告)日:1983-09-22

    申请号:DE2966069

    申请日:1979-09-24

    Applicant: IBM

    Abstract: An I-fetch control system for a computer includes a control store (30) for storing end op, I-1, I-2 and return words. A microinstruction decode and control unit (170) responds to end op words to initialize and personalize computer components to facilitate subsequent execution of a high level instruction. The control unit (170), in conjunction with a next address logic (162), selects the next @micro-instruction @ to be executed in response to a high level instruction. The control unit (170) and logic (162) are responsive to I-1 words to personalize the computer and to select a microinstruction to begin E-phase of a high level instruction. In response to I-2 control words, the control unit (170) and logic (162) select an operand fetch routine in the control store (30), and write a first E-phase address into a local store (138). The return word gates the first E-phase address from the local store (138) to select a microinstruction in the control store (30) to being E-phase.

    3.
    发明专利
    未知

    公开(公告)号:DE2702722A1

    公开(公告)日:1977-08-11

    申请号:DE2702722

    申请日:1977-01-24

    Applicant: IBM

    Abstract: A special directly executable instruction, Fetch Instruction Operand Address (FIOA) is accessed in response to encountering a complex non-directly executable instruction. Execution of the FIOA instruction causes generation of control signals for address calculation of the operands in the non-directly executable instruction by the same I phase hardware used by other directly executable instructions.

    APPARATUS FOR HANDLING TAGGED POINTERS

    公开(公告)号:DE2961891D1

    公开(公告)日:1982-03-04

    申请号:DE2961891

    申请日:1979-09-24

    Applicant: IBM

    Abstract: Tagged pointer handling apparatus is provided for implementation in a computer system wherein a tag bit is provided for each word in main storage. This invention provides for the mixing of data and pointers within the same storage space, and provides a capability for checking and verifying the validity of the pointers without affecting the performance or operation of other instructions. Only the tag instructions can set the tag bits ON in main storage; all other instructions store data and set the corresponding tag bits OFF. Thus, if a pointer was modified inadvertently by one of these data handling instructions, the fact that the pointer is untagged is detected and the values in the pointer are treated as invalid when the pointer is used by the Load and Verify Tags instruction. Instructions to load, store, set, move, extract and insert tags are implemented by the tagged pointer handling apparatus. A Load and Verify Tags instruction checks the validity of the pointer and if valid, loads the pointer into a specified general purpose register. A Store and Set Tags instruction stores the value in a specified general purpose register into main storage and sets the associated tag bits ON. A Move and Set Tags instruction moves a word from one location in main storage to another or the same location in main storage and sets the associated tag bits ON. A Move Characters and Tags instruction moves a word and the associated tag bits from one storage location to another storage location. An Extract Tags instruction fetches each word from an operand in main storage, extracts the tag bits, compresses the tag bits to one tag bit per quadword, and stores the tag bits in main storage as data. An Insert Tags instruction fetches the tag bits stored in main storage as data, expands the tag bits to one tag bit per word, and inserts them on each associated word of an operand in main storage.

    7.
    发明专利
    未知

    公开(公告)号:IT7926080D0

    公开(公告)日:1979-09-28

    申请号:IT2608079

    申请日:1979-09-28

    Applicant: IBM

    Abstract: Tagged pointer handling apparatus is provided for implementation in a computer system wherein a tag bit is provided for each word in main storage. This invention provides for the mixing of data and pointers within the same storage space, and provides a capability for checking and verifying the validity of the pointers without affecting the performance or operation of other instructions. Only the tag instructions can set the tag bits ON in main storage; all other instructions store data and set the corresponding tag bits OFF. Thus, if a pointer was modified inadvertently by one of these data handling instructions, the fact that the pointer is untagged is detected and the values in the pointer are treated as invalid when the pointer is used by the Load and Verify Tags instruction. Instructions to load, store, set, move, extract and insert tags are implemented by the tagged pointer handling apparatus. A Load and Verify Tags instruction checks the validity of the pointer and if valid, loads the pointer into a specified general purpose register. A Store and Set Tags instruction stores the value in a specified general purpose register into main storage and sets the associated tag bits ON. A Move and Set Tags instruction moves a word from one location in main storage to another or the same location in main storage and sets the associated tag bits ON. A Move Characters and Tags instruction moves a word and the associated tag bits from one storage location to another storage location. An Extract Tags instruction fetches each word from an operand in main storage, extracts the tag bits, compresses the tag bits to one tag bit per quadword, and stores the tag bits in main storage as data. An Insert Tags instruction fetches the tag bits stored in main storage as data, expands the tag bits to one tag bit per word, and inserts them on each associated word of an operand in main storage.

    8.
    发明专利
    未知

    公开(公告)号:IT1165345B

    公开(公告)日:1987-04-22

    申请号:IT2608079

    申请日:1979-09-28

    Applicant: IBM

    Abstract: Tagged pointer handling apparatus is provided for implementation in a computer system wherein a tag bit is provided for each word in main storage. This invention provides for the mixing of data and pointers within the same storage space, and provides a capability for checking and verifying the validity of the pointers without affecting the performance or operation of other instructions. Only the tag instructions can set the tag bits ON in main storage; all other instructions store data and set the corresponding tag bits OFF. Thus, if a pointer was modified inadvertently by one of these data handling instructions, the fact that the pointer is untagged is detected and the values in the pointer are treated as invalid when the pointer is used by the Load and Verify Tags instruction. Instructions to load, store, set, move, extract and insert tags are implemented by the tagged pointer handling apparatus. A Load and Verify Tags instruction checks the validity of the pointer and if valid, loads the pointer into a specified general purpose register. A Store and Set Tags instruction stores the value in a specified general purpose register into main storage and sets the associated tag bits ON. A Move and Set Tags instruction moves a word from one location in main storage to another or the same location in main storage and sets the associated tag bits ON. A Move Characters and Tags instruction moves a word and the associated tag bits from one storage location to another storage location. An Extract Tags instruction fetches each word from an operand in main storage, extracts the tag bits, compresses the tag bits to one tag bit per quadword, and stores the tag bits in main storage as data. An Insert Tags instruction fetches the tag bits stored in main storage as data, expands the tag bits to one tag bit per word, and inserts them on each associated word of an operand in main storage.

    TASK HANDLING APPARATUS FOR A COMPUTOR SYSTEM

    公开(公告)号:AU3645078A

    公开(公告)日:1979-11-29

    申请号:AU3645078

    申请日:1978-05-24

    Applicant: IBM

    Abstract: Task handling apparatus in a computer system is structured to be common to system control tasks, user tasks and I/O tasks. Although the task handling apparatus contains a task priority structure, all tasks are handled in the same manner, and there are no fixed interrupt levels for I/O tasks. There are N levels of priority, and N is variable. Each task is a server for a functional request. Task dispatching elements (TDE's) are enqueued in priority sequence on a task dispatching queue (TDQ). A task dispatcher functions to dispatch the highest priority TDE on the TDQ, if any, and to perform task switching. Intertask communication is accomplished by send message, send count, receive message and receive count mechanisms, and is coupled with task synchronization. Task synchronization is achieved by dequeueing and enqueueing TDE's on the TDQ. An active task becomes inactive dispatchable when a higher priority TDE is enqueued on the TDQ by send message or send count mechanisms. The active task becomes inactive waiting when a receive message or receive count is not satisfied. An inactive dispatchable task becomes the active task when it becomes the highest priority enqueued TDE on the TDQ by the receive message or receive count mechanisms. An inactive waiting task becomes either the active task or an inactive dispatchable task after being enqueued on the TDQ by the send message or send count mechanisms, depending upon whether it is the highest or other than the highest priority TDE on the TDQ.

Patent Agency Ranking