Abstract:
PROBLEM TO BE SOLVED: To provide a process which reduces the number of treatment processes, eliminates a problem about an integration of the process such as a via landing on a resistor and a capacitor, and improves a performance and a property to be used. SOLUTION: An insulating oxide layer is accumulated, a lower electrode of the capacitor is formed by accumulating a metal layer, and a dielectric of the capacitor is formed by accumulating a dielectric layer on the metal layer. the dielectric and the lower electrode of the capacitor are patterned by a lithography and etched. The upper electrode of the capacitor is formed on the capacitor dielectric by accumulating the metal layer, a thin-film resistor with different structure is formed at one side of the capacitor, and a nitride etching-stopping cap is accumulated on the upper electrode of the capacitor and on the metal layer of the thin-film resistor. The upper electrode of the capacitor and the thin-film resistor are patterned by lithography and etched. An interlayer dielectric layer ILD is accumulated on the upper electrode of the capacitor and on the thin-film resistor. An ILD wiring level is patterned by the lithography and etched. An integrated copper structure is formed by accumulating a liner layer and a copper layer. A final structure of MIMCAP is formed by chemical-mechanical polishing of the integrated copper structure. COPYRIGHT: (C)2004,JPO&NCIPI
Abstract:
A planarization method includes planarizing a semiconductor wafer in a first chemical mechanical polish step to remove overburden and planarize a top layer leaving a thickness of top layer material over underlying layers. The top layer material is planarized in a second chemical mechanical polish step to further remove the top layer and expose underlying layers of a second material and a third material such that a selectivity of the top layer material to the second material to the third material is between about 1:1:1 to about 2:1:1 to provide a planar topography.
Abstract:
Methods for polishing multiple dielectric layers to form replacement metal gate structures include a first chemical mechanical polish step to remove overburden and planarize a top layer to leave a planarized thickness over a gate structure. A second chemical mechanical polish step includes removal of the thickness to expose an underlying covered surface of a dielectric of the gate structure with a slurry configured to polish the top layer and the underlying covered surface substantially equally to accomplish a planar topography. A third chemical mechanical polish step is employed to remove the dielectric of the gate structure and expose a gate conductor.
Abstract:
Methods for polishing multiple dielectric layers to form replacement metal gate structures include a first chemical mechanical polish step to remove overburden and planarize a top layer to leave a planarized thickness over a gate structure. A second chemical mechanical polish step includes removal of the thickness to expose an underlying covered surface of a dielectric of the gate structure with a slurry configured to polish the top layer and the underlying covered surface substantially equally to accomplish a planar topography. A third chemical mechanical polish step is employed to remove the dielectric of the gate structure and expose a gate conductor.
Abstract:
A wafer polishing tool is disclosed which includes a polishing platen which is rotatable about a central platen axis, and a wafer carrier which supports a wafer for rotational movement to cause a portion of a surface of the wafer to only intermittently contact a polishing surface of the platen while the wafer rotates. The polishing tool may include a plurality of vertically stacked polishing platens which are rotatable about a central platen axis, and a plurality of stacked wafer carriers, wherein each carrier supports a wafer for rotational movement and vertical movement into contact with one of the polishing platens. During polishing, the carrier pack maintains the wafers in uninterrupted contact with the platen over less than entire surfaces of the wafers.
Abstract:
Verfahren zum Polieren für ein Ausbilden von Strukturen mit metallischen Ersatz-Gates, aufweisend: einen ersten chemisch-mechanischen Polierschritt, um Materialüberschuss zu entfernen und eine oberste Schicht zu planarisieren, um eine planarisierte Dicke über einer Gate-Struktur zurückzulassen; einen zweiten chemisch-mechanischen Polierschritt, aufweisend ein Entfernen der planarisierten Dicke durch gleichmäßiges Polieren und dadurch Entfernen der obersten Schicht und Freilegen einer darunterliegenden bedeckten Oberfläche eines Dielektrikums der Gate-Struktur mit einem Poliermittel, sodass eine ebene Topografie erreicht wird; und ein dritter chemisch-mechanischer Polierschritt, um das Dielektrikum von der Gate-Struktur zu entfernen und einen Gate-Leiter freizulegen.
Abstract:
A planarization method includes planarizing a semiconductor wafer in a first chemical mechanical polish step to remove overburden and planarize a top layer leaving a thickness of top layer material over underlying layers. The top layer material is planarized in a second chemical mechanical polish step to further remove the top layer and expose underlying layers of a second material and a third material such that a selectivity of the top layer material to the second material to the third material is between about 1:1:1 to about 2:1:1 to provide a planar topography.
Abstract:
Vorrichtung (100; 200; 300; 400), welche eine Trägerplattform (68) umfasst, wobei die Trägerplattform (68) Folgendes umfasst: eine Grundplatte (34) mit N Löchern darin, wobei N eine Ganzzahl größer als 2 ist; N Wellen (38), wobei jede einzelne der N Wellen (38) sich durch eines der N Löcher erstreckt, einen Endteil hat, welcher aus einer Oberfläche der Grundplatte (34) auf einer Seite der Grundplatte (34) hervorsteht, und an einer bewegungsübertragenden Baueinheit (32A, 32B, 32C; 32A, 32B, 32C, 32D, 32E) befestigt ist, welche so konfiguriert ist, dass sie die N Wellen (38) auf einer entgegengesetzten Seite der Grundplatte (34) um ihre jeweiligen Achsen dreht; und N Trägeradapter (39), wobei jeder einzelne der N Trägeradapter (39) an jedem einzelnen der N Endteile befestigt ist und so konfiguriert ist, dass er einen Substratträger (72) halten kann; und wobei die Vorrichtung (100; 200; 300; 400) ein Transportbahnsystem (64, 16; 64, 16; 350) umfasst, welches so konfiguriert ist, dass es in die Trägerplattform (68) eingreift und die Trägerplattform (68) in einer Richtung senkrecht zu den Achsen der N Wellen transportiert.