Abstract:
At least one input/output (I/O) firmware partition is provided in a partitioned environment to facilitate access to I/O resources owned by the at least one I/O firmware partition. The I/O resources of an I/0 firmware partition are shared by one or more other partitions of the environment, referred to as consumer partitions. The consumer partitions use the I/O firmware partition to access the I/O resources. Since the I/O firmware partitions are responsible for providing access to the I/O resources owned by those partitions, the consumer partitions are relieved of this task, reducing complexity and costs in the consumer partitions.
Abstract:
At least one input/output (I/O) firmware partition is provided in a partitioned environment to facilitate access to I/O resources owned by the at least one I/O firmware partition. The I/O resources of an I/0 firmware partition are shared by one or more other partitions of the environment, referred to as consumer partitions. The consumer partitions use the I/O firmware partition to access the I/O resources. Since the I/O firmware partitions are responsible for providing access to the I/O resources owned by those partitions, the consumer partitions are relieved of this task, reducing complexity and costs in the consumer partitions.
Abstract:
PROBLEM TO BE SOLVED: To allow, by a host partition update mechanism, update of the I/O function of a logically-partitioned computer system so as to minimally affect the performance and availability of I/O in the computer system. SOLUTION: When an update is needed, a new host partition is created with the desired update(s). The I/O adapters in the current host partition are then migrated to the new host partition. The migration of an I/O adapter from the current host partition to the new host partition is relatively fast, thereby minimally affecting system performance and availability of I/O. Once all of the I/O adapters have been migrated to the new host partition, the current host partition may be kept as a backup, or may be eliminated. Providing a new or backup host partition allows updates to be performed in the new or backup host partition in a non-disruptive manner while the current host partition continues to process I/O requests. COPYRIGHT: (C)2006,JPO&NCIPI
Abstract:
A method, system, and product in a data processing system are disclosed for providing centralized management of an InfiniBand distributed system-area network that includes multiple end nodes. A manager application is establish ed in one of the end nodes. An agent application is established in one or more end nodes. Each agent application is independent from the manager applicatio n. The manager application maintains a current list of active agent application s and uses the list to manage the agent applications in the end nodes.
Abstract:
At least one input/output (I/O) firmware partition is provided in a partitioned environment to facilitate access to I/O resources owned by the at least one I/O firmware partition. The I/O resources of an I/0 firmware partition are shared by one or more other partitions of the en~vironment, referred to as consumer partitions. The consumer partitions use the I/O firmware partition to access the I/O resources. Since the I/O firmware partitions are responsible for providing access to the I/O resources owned by those partitions, the consumer partitions are relieved of this task, reducing complexity and costs in the consumer partitions.
Abstract:
A method, system, and product in a data processing system are disclosed for providing centralized management of an InfiniBand distributed system-area network that includes multiple end nodes. A manager application is established in one of the end nodes. An agent application is established in one or more end nodes. Each agent application is independent from the manager application. The manager application maintains a current list of active agent applications and uses the list to manage the agent applications in the end nodes.
Abstract:
To emulate multi-threaded processing in an operating system supporting only single-threaded processes and single-level interrupts, the processor timer is started with a selected time-out period during execution of a master code thread. Processing of the master code thread proceeds until the timer interrupt, at which time the operating system timer interrupt service routine (ISR) transfers execution control to a slave code thread or slave code thread component. The slave code thread or component is executed in its entirety, at which time the timer is reset and execution control is returned to the master code thread, where processing resumes at the point during which the timer interrupt was asserted. To minimize disruption of the master code thread execution, a maximum latency should be enforced on the slave code thread, which may be accomplished by breaking the slave code thread into multiple components. The timer ISR maintains an index of the predetermined starting points within the slave code thread(s) with a pointer identifying the next slave code thread component to be selected when the timer interrupt is asserted. Processing thus alternates between the master code thread and the slave code thread or components, with different slave code thread components being selected in round-robin fashion. The duty cycle between the master code thread and the slave code thread or components may be varied by selection of the timeout period and the maximum latency allowed to slave code thread processing.
Abstract:
A method, system, and product in a data processing system are disclosed for providing centralized management of an INFINIBAND distributed system-area network that includes multiple end nodes. A manager application is established in one of the end nodes. An agent application is established in one or more end nodes. Each agent application is independent from the manager application. The manager application maintains a current list of active agent applications and uses the list to manage the agent applications in the end nodes.
Abstract:
A method and an apparatus is presented for updating flash memory that contains a write protected code, a first copy of rewritable recovery code, a second copy of rewritable recovery code, and a rewritable composite code. Each block of rewritable code contains a checksum code to detect if the block of code has been corrupted. If it is detected that the first copy of the recovery code is corrupted then the second copy of the recovery code is copied into the first copy of the recovery code. If it is detected the second copy of the recovery code is corrupted then the first copy of the recovery code is copied into the second copy of the recovery code. The recovery code is responsible for checking and updating the composite code. If it is detected the composite code is corrupted then a fresh copy of the composite code is obtained from a removable storage device or a network connection. The data processing system is booted by executing the write protected code, the first copy of the recovery code, and the composite code. There is a minimum of redundant code by only replicating two copies of the recovery code while, at the same time, guaranteeing both the integrity and the updatability of the flash memory.
Abstract:
A method, system, and product in a data processing system are disclosed for providing centralized management of an INFINIBAND distributed system-area network that includes multiple end nodes. A manager application is established in one of the end nodes. An agent application is established in one or more end nodes. Each agent application is independent from the manager application. The manager application maintains a current list of active agent applications and uses the list to manage the agent applications in the end nodes.