Abstract:
PROBLEM TO BE SOLVED: To provide a method for manufacturing a super-steep retrograde well field effect transistor device, and to provide an ultra-thin body FET device manufactured by the same. SOLUTION: The method for manufacturing a super-steep retrograde well field effect transistor device starts with an SOI layer formed on a substrate, for example, an embedded oxide layer. The SOI layer is thinned so as to form an ultra-thin SOI layer. A separation trench is formed for dividing the SOI layer into an N ground layer region and a P ground layer region. The N and P ground layer regions formed in the SOI layer are doped with N-type and P-type dopants to a high concentration level. A semiconductor channel region is formed on the N and P ground layer regions. The source region and the drain region of the FET and the gate electrode stack on the channel region are formed. As desired, a diffusion retarding layer is formed between the SOI ground layer regions and the channel regions. COPYRIGHT: (C)2006,JPO&NCIPI
Abstract:
PROBLEM TO BE SOLVED: To provide a structure having the superposition of stressed layers bringing a compressive stress into the channel of a p-type MOSFET device and a tensile stress into the channel of an n-type MOSFET device on each gate stack and including the p-type MOSFET device and the n-type MOSFET device that are adjacent, and to provide a method of manufacturing the same. SOLUTION: One of a p-type MOSFET device or an n-type MOSFET device has a height shorter than that of the other adjacent device, and the boundary of the shorter device of the two devices is defined by a discontinuity, i.e. an opening part in the stressed layers superposed on the shorter device. In a preferable method for forming the device, a single stressed layer is formed on the gate stack having different heights for forming a first type stress in the substrate under the gate stack. An opening part is formed in the stressed layer at a distance from the shorter gate stack, so that a second type stress is formed under the shorter gate stack. COPYRIGHT: (C)2007,JPO&INPIT
Abstract:
The present invention provides a method of forming asymmetric field-effect-transistors. The method includes forming a gate structure on top of a semiconductor substrate, the gate structure including a gate stack and spacers adjacent to sidewalls of the gate stack, and having a first side and a second side opposite to the first side; performing angled ion-implantation from the first side of the gate structure in the substrate, thereby forming an ion-implanted region adjacent to the first side, wherein the gate structure prevents the angled ion-implantation from reaching the substrate adjacent to the second side of the gate structure; and performing epitaxial growth on the substrate at the first and second sides of the gate structure. As a result, epitaxial growth on the ion-implanted region is much slower than a region experiencing no ion-implantation. A source region formed to the second side of the gate structure by the epitaxial growth has a height higher than a drain region formed to the first side of the gate structure by the epitaxial growth. A semiconductor structure formed thereby is also provided.
Abstract:
Silicon-on-insulator (SOI) structures with silicon layers less than 20 nm thick are used to form extremely thin silicon-on-insulator (ETSOI) semiconductor devices. ETSOI devices are manufactured using a thin tungsten backgate 101 encapsulated by thin nitride layers 100, 102 to prevent metal oxidation, the tungsten backgate 103 being characterized by its low resistivity. The structure further includes at least one FET having a gate stack 131, 132, 133 formed by a high-K metal gate 132 and a tungsten region 133 superimposed thereon, the footprint of the gate stack utilizing the thin SOI layer 100 as a channel. The SOI structure thus formed controls Vt variations from the thin SOI thickness and dopants therein. The ETSOI high-K metal backgate fully depleted device in conjunction with the thin BOX provides an excellent short channel control and significantly lowers the drain induced bias and sub-threshold swings. The present structure supports the evidence of the stability of the wafer having a tungsten film during thermal processing, and especially during STI and contact formation.
Abstract:
This invention teaches methods of combining ion implantation steps with in situ or ex situ heat treatments to avoid and/or minimize implant-induced amorphization (a potential problem for source/drain (SfD) regions in FETs in ultrathin silicon on insulator layers) and implant-induced plastic relaxation of strained S/D regions (a potential problem for strained channel FETs in which the channel strain is provided by embedded S/D regions lattice mismatched with an underlying substrate layer). In a first embodiment, ion implantation is combined with in situ heat treatment by performing the ion implantation at elevated temperature. In a second embodiment, ion implantation is combined withex situ heat treatments in a "divided-dose-anneal-in-between" (DDAB) scheme that avoids the need for tooling capable of performing hot implants.
Abstract:
Halbleitereinheit, die Folgendes umfasst: eine erste Schicht 105 eines vergrabenen Oxids (BOX) auf einem Siliciumsubstrat 106 und eine Rückgate-Metallschicht 103, die auf der Oberseite des BOX von einer oberen Schicht 102 und einer unteren Schicht 104 aus dünnem Nitrid umgeben ist; ein dünnes zweites BOX 101 auf der oberen dünnen Nitridschicht und eine darauf angeordnete dünne SOI-Schicht 100, wobei die zweite BOX-Schicht, die obere dünne Nitridschicht und die dünne SOI-Schicht an ein Abstandselement 150 angrenzen; und einen FET, der über einen Gate-Stapel auf der Oberseite der dünnen SOI-Schicht 131, 132, 133 verfügt, wobei der Gate-Stapel eine dielektrische Schicht 131 an der Grundfläche des Gate-Stapels aufweist, wobei die SOI-Schicht einen vertieften Kanal zu dem FET bereitstellt.
Abstract:
Silicium-auf-Isolator(SOI)-Strukturen mit Siliciumschichten mit einer Dicke von weniger als 20 nm werden dazu verwendet, Halbleitereinheiten mit extrem dünnem Silicium-auf-Isolator (ETSOI) auszubilden. ETSOI-Einheiten werden unter Verwendung eines dünnen Wolfram-Rückgates 101 gefertigt, das von dünnen Nitridschichten 100, 102 eingekapselt ist, um eine Metalloxidation zu verhindern, wobei das Wolfram-Rückgate 103 durch seinen geringen spezifischenaltet des Weiteren zumindest einen FET, der einen Gate-Stapel 131, 132, 133 aufweist, der durch ein High-k-Metallgate 132 und einen darauf angeordneten Wolframbereich 133 ausgebildet ist, wobei die Grundfläche des Gate-Stapels die dünne SOI-Schicht 100 als Kanal nutzt. Die auf diese Weise ausgebildete SOI-Struktur steuert VT-Schwankungen, die durch die geringe SOI-Dicke und Dotierstoffe darin entstehen. Die vollständig verarmte ETSOI-Einheit mit High-k-Metallrückgate stellt zusammen mit dem dünnen BOX eine ausgezeichnete Kurzkanalsteuerung bereit und senkt die Drain-induzierte Vorspannung und den Subthreshold-Swing erheblich. Die vorliegende Struktur unterstützt den Nachweis der Stabilität des Wafers, der eine Wolframdünnschicht aufweist, während einer thermischen Bearbeitung und insbesondere während einer STI und einer Kontaktausbildung.
Abstract:
Silicium-auf-Isolator(SOI)-Strukturen mit Siliciumschichten mit einer Dicke von weniger als 20 nm werden dazu verwendet, Halbleitereinheiten mit extrem dünnem Silicium-auf-Isolator (ETSOI) auszubilden. ETSOI-Einheiten werden unter Verwendung eines dünnen Wolfram-Rückgates 101 gefertigt, das von dünnen Nitridschichten 100, 102 eingekapselt ist, um eine Metalloxidation zu verhindern, wobei das Wolfram-Rückgate 103 durch seinen geringen spezifischenaltet des Weiteren zumindest einen FET, der einen Gate-Stapel 131, 132, 133 aufweist, der durch ein High-k-Metallgate 132 und einen darauf angeordneten Wolframbereich 133 ausgebildet ist, wobei die Grundfläche des Gate-Stapels die dünne SOI-Schicht 100 als Kanal nutzt. Die auf diese Weise ausgebildete SOI-Struktur steuert VT-Schwankungen, die durch die geringe SOI-Dicke und Dotierstoffe darin entstehen. Die vollständig verarmte ETSOI-Einheit mit High-k-Metallrückgate stellt zusammen mit dem dünnen BOX eine ausgezeichnete Kurzkanalsteuerung bereit und senkt die Draininduzierte Vorspannung und den Subthreshold-Swing erheblich. Die vorliegende Struktur unterstützt den Nachweis der Stabilität des Wafers, der eine Wolframdünnschicht aufweist, während einer thermischen Bearbeitung und insbesondere während einer STI und einer Kontaktausbildung.
Abstract:
The present invention provides a method of forming asymmetric field-effect-transistors. The method includes forming a gate structure on top of a semiconductor substrate, the gate structure including a gate stack and spacers adjacent to sidewalls of the gate stack, and having a first side and a second side opposite to the first side; performing angled ion-implantation from the first side of the gate structure in the substrate, thereby forming an ion-implanted region adjacent to the first side, wherein the gate structure prevents the angled ion-implantation from reaching the substrate adjacent to the second side of the gate structure; and performing epitaxial growth on the substrate at the first and second sides of the gate structure. As a result, epitaxial growth on the ion-implanted region is much slower than a region experiencing no ion-implantation. A source region formed to the second side of the gate structure by the epitaxial growth has a height higher than a drain region formed to the first side of the gate structure by the epitaxial growth. A semiconductor structure formed thereby is also provided.
Abstract:
Die vorliegende Erfindung stellt ein Verfahren zum Bilden asymmetrischer Feldeffekttransistoren bereit. Das Verfahren umfasst das Bilden einer Gate-Struktur auf einem Halbleitersubstrat, wobei die Gate-Struktur einen Gate-Stapel und Abstandhalter in Nachbarschaft zu Seitenwänden des Gate-Stapels umfasst und eine erste Seite und eine zweite Seite gegenüber der ersten Seite aufweist; das Durchführen einer schrägen Ionenimplantation von der ersten Seite der Gate-Struktur in dem Substrat, wodurch eine Zone mit Ionenimplantation in Nachbarschaft zu der ersten Seite gebildet wird, wobei die Gate-Struktur verhindert, dass die schräge Ionenimplantation das Substrat in Nachbarschaft zu der zweiten Seite der Gate-Struktur erreicht; und das Durchführen eines epitaxialen Anwachsens auf dem Substrat auf der ersten und zweiten Seite der Gate-Struktur. Als Ergebnis ist das epitaxiale Anwachsen auf dem Bereich mit Ionenimplantation viel langsamer als auf einem Bereich, welcher keine Ionenimplantation erfährt. Eine Source-Zone, welche durch das epitaxiale Anwachsen auf der zweiten Seite der Gate-Struktur gebildet wird, weist eine Höhe auf, die größer ist als die einer Drain-Zone, welche durch das epitaxiale Anwachsen auf der ersten Seite der Gate-Struktur gebildet wird. Eine dadurch gebildete Halbleiterstruktur wird ebenfalls bereitgestellt.