Abstract:
Hybrid orientation substrates allow the fabrication of complementary metal oxide semiconductor (CMOS) circuits in which the n-type field effect transistors (nFETs) are disposed in a semiconductor orientation which is optimal for electron mobility and the p-type field effect transistors (pFETs) are disposed in a semiconductor orientation which is optimal for hole mobility. This invention discloses that the performance advantages of FETs formed entirely in the optimal semiconductor orientation may be achieved by only requiring that the device's channel be disposed in a semiconductor with the optimal orientation. A variety of new FET structures are described, all with the characteristic that at least some part of the FET's channel has a different orientation than at least some part of the FET's source and/or drain. Hybrid substrates into which these new FETs might be incorporated are described along with their methods of making.
Abstract:
PROBLEM TO BE SOLVED: To provide an asymmetric semiconductor device, and to provide a method using a spacer scheme in manufacturing the same. SOLUTION: A semiconductor structure is provided that includes an asymmetric gate stack located on a surface of high-k gate dielectric. The asymmetric gate stack includes a first portion and a second portion, wherein the first portion has a different threshold voltage than the second portion. The first portion of the asymmetric gate stack includes, from bottom to top, a threshold voltage adjusting material and at least a first conductive spacer, while the second portion of the asymmetric gate stack includes at least a second conductive spacer over the gate dielectric. In some embodiments, the second conductive spacer is in direct contact with the underlying high-k gate dielectric, while, in other embodiments, the first and second conductive spacers are in direct contact with the threshold voltage adjusting material. COPYRIGHT: (C)2011,JPO&INPIT
Abstract:
PROBLEM TO BE SOLVED: To provide a complementary metal-oxide film semiconductor (CMOS) device that is free from causing troubles in contact formation by a stress liner, and to provide a method of manufacturing the device.SOLUTION: The complementary metal-oxide film semiconductor (CMOS) device is prepared with a constitution having a silicon-dioxide layer 102 on a silicon-substrate layer, and a concave source/drain trench. A nitride stress liner 104 is deposited in the concave source/drain trench, and further an oxide layer 106 is deposited thereon. The CMOS device is set on a handling wafer, the silicon-substrate layer is removed, and the silicon-dioxide layer 102 is etched to form an opening in contact with part of a source/drain region 170. Resultantly, a contact 180 is formed.
Abstract:
The present invention provides an improved amorphization/templated recrystallization (ATR) method for fabricating low-defect-density hybrid orientation substrates. ATR methods for hybrid orientation substrate fabrication generally start with a Si layer having a first orientation bonded to a second Si layer or substrate having a second orientation. Selected regions of the first Si layer are amorphized and then recrystallized into the orientation of the second Si layer by using the second Si layer as a template. In particular, this invention provides a melt-recrystallization ATR method, for use alone or in combination with non-melt-recrystallization ATR methods, in which selected Si regions bounded by dielectric-filled trenches are induced to undergo an orientation change by the steps of preamorphization, laser-induced melting, and corner-defect-free templated recrystallization from the melt.
Abstract:
The present invention provides an improved amorphization/ templated recrystallization (ATR) method for fabricating low-defect-density hybrid orientation substrates. ATR methods for hybrid orientation substrate fabrication generally start with a Si layer having a first orientation bonded to a second Si layer or substrate having a second orientation. Selected regions of the first Si layer are amorphized and then recrystallized into the orientation of the second Si layer by using the second Si layer as a template. The process flow of the present invention solves two major difficulties not disclosed by prior art ATR methods: the creation of "corner defects" at the edges of amorphized Si regions bounded by trenches, and undesired orientation changes during a high temperature post-recrystallization defect-removal annealing of non-ATR'd regions not bounded by trenches. In particular, this invention provides a process flow comprisng the steps of (i) amorphization and low-temperature recrystallization performed in substrate regions free of trenches; (ii) formation of trench isolation regions that subsume the defective regions at the edge of the ATR'd regions, and (iii) a high-temperature defect-removal anneal performed with the trench isolation regions in place.
Abstract:
The present invention provides a method of forming asymmetric field-effect-transistors. The method includes forming a gate structure on top of a semiconductor substrate, the gate structure including a gate stack and spacers adjacent to sidewalls of the gate stack, and having a first side and a second side opposite to the first side; performing angled ion-implantation from the first side of the gate structure in the substrate, thereby forming an ion-implanted region adjacent to the first side, wherein the gate structure prevents the angled ion-implantation from reaching the substrate adjacent to the second side of the gate structure; and performing epitaxial growth on the substrate at the first and second sides of the gate structure. As a result, epitaxial growth on the ion-implanted region is much slower than a region experiencing no ion-implantation. A source region formed to the second side of the gate structure by the epitaxial growth has a height higher than a drain region formed to the first side of the gate structure by the epitaxial growth. A semiconductor structure formed thereby is also provided.
Abstract:
In the claimed mixed-crystal-orientation channel FET, source/drain regions above the bonded interface 360 have the orientation of the upper semiconductor 350 and source/drain regions below the bonded interface 360 have the orientation of the lower semiconductor 370, so that each part of the source/drain has the same crystal orientation as the semiconductor material laterally adjacent to it. Optional source/drain extensions 392 are disposed entirely in the upper semiconductor layer 350. Optionally, the bonded interface 360 is situated towards the bottom of source/drain regions 380, leaving source/drains 380 mostly in upper semiconductor layer 350.
Abstract:
The present invention provides a method of forming asymmetric field-effect-transistors. The method includes forming a gate structure on top of a semiconductor substrate, the gate structure including a gate stack and spacers adjacent to sidewalls of the gate stack, and having a first side and a second side opposite to the first side; performing angled ion-implantation from the first side of the gate structure in the substrate, thereby forming an ion-implanted region adjacent to the first side, wherein the gate structure prevents the angled ion-implantation from reaching the substrate adjacent to the second side of the gate structure; and performing epitaxial growth on the substrate at the first and second sides of the gate structure. As a result, epitaxial growth on the ion-implanted region is much slower than a region experiencing no ion-implantation. A source region formed to the second side of the gate structure by the epitaxial growth has a height higher than a drain region formed to the first side of the gate structure by the epitaxial growth. A semiconductor structure formed thereby is also provided.
Abstract:
Die vorliegende Erfindung stellt ein Verfahren zum Bilden asymmetrischer Feldeffekttransistoren bereit. Das Verfahren umfasst das Bilden einer Gate-Struktur auf einem Halbleitersubstrat, wobei die Gate-Struktur einen Gate-Stapel und Abstandhalter in Nachbarschaft zu Seitenwänden des Gate-Stapels umfasst und eine erste Seite und eine zweite Seite gegenüber der ersten Seite aufweist; das Durchführen einer schrägen Ionenimplantation von der ersten Seite der Gate-Struktur in dem Substrat, wodurch eine Zone mit Ionenimplantation in Nachbarschaft zu der ersten Seite gebildet wird, wobei die Gate-Struktur verhindert, dass die schräge Ionenimplantation das Substrat in Nachbarschaft zu der zweiten Seite der Gate-Struktur erreicht; und das Durchführen eines epitaxialen Anwachsens auf dem Substrat auf der ersten und zweiten Seite der Gate-Struktur. Als Ergebnis ist das epitaxiale Anwachsen auf dem Bereich mit Ionenimplantation viel langsamer als auf einem Bereich, welcher keine Ionenimplantation erfährt. Eine Source-Zone, welche durch das epitaxiale Anwachsen auf der zweiten Seite der Gate-Struktur gebildet wird, weist eine Höhe auf, die größer ist als die einer Drain-Zone, welche durch das epitaxiale Anwachsen auf der ersten Seite der Gate-Struktur gebildet wird. Eine dadurch gebildete Halbleiterstruktur wird ebenfalls bereitgestellt.
Abstract:
Die vorliegende Erfindung stellt ein Verfahren zum Bilden asymmetrischer Feldeffekttransistoren bereit. Das Verfahren umfasst das Bilden einer Gate-Struktur auf einem Halbleitersubstrat, wobei die Gate-Struktur einen Gate-Stapel und Abstandhalter in Nachbarschaft zu Seitenwänden des Gate-Stapels umfasst und eine erste Seite und eine zweite Seite gegenüber der ersten Seite aufweist; das Durchführen einer schrägen Ionenimplantation von der ersten Seite der Gate-Struktur in dem Substrat, wodurch eine Zone mit Ionenimplantation in Nachbarschaft zu der ersten Seite gebildet wird, wobei die Gate-Struktur verhindert, dass die schräge Ionenimplantation das Substrat in Nachbarschaft zu der zweiten Seite der Gate-Struktur erreicht; und das Durchführen eines epitaxialen Anwachsens auf dem Substrat auf der ersten und zweiten Seite der Gate-Struktur. Als Ergebnis ist das epitaxiale Anwachsen auf dem Bereich mit Ionenimplantation viel langsamer als auf einem Bereich, welcher keine Ionenimplantation erfährt. Eine Source-Zone, welche durch das epitaxiale Anwachsen auf der zweiten Seite der Gate-Struktur gebildet wird, weist eine Höhe auf, die größer ist als die einer Drain-Zone, welche durch das epitaxiale Anwachsen auf der ersten Seite der Gate-Struktur gebildet wird. Eine dadurch gebildete Halbleiterstruktur wird ebenfalls bereitgestellt.