COMPRESSIVE SIGE <110> GROWTH AND STRUCTURE OF MOSFET DEVICES
    1.
    发明公开
    COMPRESSIVE SIGE <110> GROWTH AND STRUCTURE OF MOSFET DEVICES 审中-公开
    KOMPRESSIVES SIGE- <110> -WACHSTUM UND STRUKTURFÜRMOSFET-BAUELEMENTE

    公开(公告)号:EP1794786A4

    公开(公告)日:2008-12-24

    申请号:EP05785191

    申请日:2005-06-21

    Applicant: IBM

    Abstract: A structure for conducting carriers and method for forming is described incorporating a single crystal substrate of Si or SiGe having an upper surface in the and a psuedomorphic or epitaxial layer of SiGe having a concentration of Ge different than the substrate whereby the psuedomorphic layer is under strain. A method for forming semiconductor epitaxial layers is described incorporating the step of forming a psuedomorphic or epitaxial layer in a rapid thermal chemical vapor deposition (RTCVD) tool by increasing the temperature in the tool to about 600ºC and introducing both a Si containing gas and a Ge containing gas. A method for chemically preparing a substrate for epitaxial deposition is described comprising the steps of immersing a substrate in a series of baths containing ozone, dilute HF, deionized water, HC1 acid and deionized water, respectively, followed by drying the substrate in an inert atmosphere to obtain a substrate surface free of impurities and with a RMS roughness of less than 0.1 nm.

    Abstract translation: 描述了一种用于导电载体的结构和形成方法,该结构包括在<110>中具有上表面的Si或SiGe的单晶衬底以及具有不同于衬底的Ge浓度的伪晶体或外延层,由此该伪晶体层 正处于紧张状态。 描述了用于形成半导体外延层的方法,其包括在快速热化学气相沉积(RTCVD)工具中形成假性或外延层的步骤,通过将工具中的温度提高至约600℃并且将含Si气体和Ge 含有气体。 描述了用于化学制备用于外延沉积的衬底的方法,其包括以下步骤:将衬底分别浸入一系列含有臭氧,稀HF,去离子水,HCl酸和去离子水的浴中,接着在惰性气氛中干燥衬底 以获得无杂质且具有小于0.1nm的RMS粗糙度的基材表面。

    SPLIT POLY-SiGe/POLY-Si ALLOY GATE STACK
    2.
    发明公开
    SPLIT POLY-SiGe/POLY-Si ALLOY GATE STACK 审中-公开
    AUFGETEILTE POLY-SIGE / POLY-SI LEGIERUNGS-GATESTAPELUNG

    公开(公告)号:EP1671376A4

    公开(公告)日:2008-09-03

    申请号:EP04785971

    申请日:2004-06-30

    Applicant: IBM

    Abstract: A multi-layered gate electrode stack structure of a field effect transistor device is formed on a silicon nano crystal seed layer (41) on the gate dielectric (43). The small grain size of the silicon nano crystal layer allows for deposition of a uniform and continuous layer of poly-SiGe (45) with a [Ge] of up to at least 70% using in situ rapid thermal chemical vapor deposition (RTCVD). An in-situ purge of the deposition chamber in a oxygen ambient at rapidly reduced temperatures results in a thin SiO2 or SixGeyOz interfacial layer (47), (3) to 4A thick. The thin SiO2 or SixGeyOZ interfacial layer is sufficiently thin and discontinuous to offer little resistance to gate current flow yet has sufficient [O] to effectively block upward Ge diffusion during heat treatment to thereby allow silicidation of a subsequently deposited layer of cobalt. This gate electrode stack structure is used for both nFETs.and pFETs.

    Abstract translation: 场效应晶体管器件的多层栅电极堆叠结构形成在栅电介质(43)上的硅纳米晶种层(41)上。 使用原位快速热化学气相沉积(RTCVD),硅纳米晶体层的小晶粒尺寸允许沉积具有高达至少70%的[Ge]的均匀且连续的多晶SiGe(45)层。 在快速降低的温度下在氧气环境中原位净化沉积室导致SiO2或SixGeyOz薄界面层(47),(3)至4A厚。 薄SiO2或SixGeyOZ界面层足够薄且不连续以提供对栅极电流流动的小阻力,但具有足够的[O]以在热处理期间有效阻挡向上的Ge扩散,从而允许随后沉积的钴层发生硅化。 该栅极电极堆叠结构用于nFET和pFET。

    MONOLAYER DOPANT EMBEDDED STRESSOR FOR ADVANCED CMOS
    8.
    发明申请
    MONOLAYER DOPANT EMBEDDED STRESSOR FOR ADVANCED CMOS 审中-公开
    用于高级CMOS的单层掺杂嵌入式压电器

    公开(公告)号:WO2011133339A3

    公开(公告)日:2012-03-08

    申请号:PCT/US2011031693

    申请日:2011-04-08

    Abstract: Semiconductor structures are disclosed that have embedded stressor elements therein. The disclosed structures include an FET gate stack 18 located on an upper surface of a semiconductor substrate 12. The FET gate stack includes source and drain extension regions 28 located within the semiconductor substrate at a footprint of the FET gate stack. A device channel 40 is also present between the source and drain extension regions and beneath the gate stack. The structure further includes embedded stressor elements 34 located on opposite sides of the FET gate stack and within the semiconductor substrate. Each of the embedded stressor elements includes a lower layer of a first epitaxy 36 doped semiconductor material having a lattice constant that is different from a lattice constant of the semiconductor substrate and imparts a strain in the device channel, and an upper layer of a second epitaxy 38 doped semiconductor material located atop the lower layer. The lower layer of the first epitaxy doped semiconductor material has a lower content of dopant as compared to the upper layer of the second epitaxy doped semiconductor material. The structure further includes a monolayer of dopant located within the upper layer of each of the embedded stressor elements. The monolayer of dopant is in direct contact with an edge of either the source extension region or the drain extension region.

    Abstract translation: 公开了在其中具有嵌入的应力元件的半导体结构。 所公开的结构包括位于半导体衬底12的上表面上的FET栅极堆叠18. FET栅极堆叠包括在FET栅极堆叠的覆盖区处位于半导体衬底内的源极和漏极延伸区域28。 器件沟道40也存在于源极延伸区域和漏极延伸区域之间以及栅极堆叠层下方。 该结构还包括位于FET栅极堆叠的相对侧并且位于半导体衬底内的嵌入式应力元件34。 每个嵌入的应力元件包括第一外延36掺杂半导体材料的下层,其具有不同于半导体衬底的晶格常数的晶格常数并且在器件沟道中施加应变,并且第二外延的上层 38掺杂的半导体材料位于下层的顶部。 与第二外延掺杂半导体材料的上层相比,第一外延掺杂半导体材料的下层具有较低的掺杂剂含量。 该结构还包括位于每个嵌入的应力元件的上层内的掺杂剂单层。 掺杂剂的单层与源极延伸区域或漏极延伸区域的边缘直接接触。

    ASYMMETRIC EPITAXY AND APPLICATION THEREOF
    9.
    发明申请
    ASYMMETRIC EPITAXY AND APPLICATION THEREOF 审中-公开
    不对称外延及其应用

    公开(公告)号:WO2011056336A3

    公开(公告)日:2011-07-28

    申请号:PCT/US2010051383

    申请日:2010-10-05

    Abstract: The present invention provides a method of forming asymmetric field-effect-transistors. The method includes forming a gate structure on top of a semiconductor substrate, the gate structure including a gate stack and spacers adjacent to sidewalls of the gate stack, and having a first side and a second side opposite to the first side; performing angled ion-implantation from the first side of the gate structure in the substrate, thereby forming an ion-implanted region adjacent to the first side, wherein the gate structure prevents the angled ion-implantation from reaching the substrate adjacent to the second side of the gate structure; and performing epitaxial growth on the substrate at the first and second sides of the gate structure. As a result, epitaxial growth on the ion-implanted region is much slower than a region experiencing no ion-implantation. A source region formed to the second side of the gate structure by the epitaxial growth has a height higher than a drain region formed to the first side of the gate structure by the epitaxial growth. A semiconductor structure formed thereby is also provided.

    Abstract translation: 本发明提供了形成非对称场效应晶体管的方法。 所述方法包括在半导体衬底的顶部上形成栅极结构,所述栅极结构包括栅极叠层和邻近所述栅极堆叠的侧壁的间隔物,并且具有与所述第一侧相对的第一侧和第二侧; 从衬底中的栅极结构的第一侧进行成角度的离子注入,从而形成与第一侧相邻的离子注入区域,其中栅极结构防止成角度的离子注入到达邻近第二侧的衬底 门结构; 以及在栅极结构的第一和第二侧在衬底上进行外延生长。 结果,在离子注入区域上的外延生长比经历无离子注入的区域慢得多。 通过外延生长形成到栅极结构的第二侧的源极区域的高度高于通过外延生长形成于栅极结构的第一侧的漏极区域的高度。 还提供了由此形成的半导体结构。

    DELTA MONOLAYER DOPANTS EPITAXY FOR EMBEDDED SOURCE/DRAIN SILICIDE
    10.
    发明申请
    DELTA MONOLAYER DOPANTS EPITAXY FOR EMBEDDED SOURCE/DRAIN SILICIDE 审中-公开
    DELTA MONOLAYER DOPANTS嵌入式源/漏极硅胶外观

    公开(公告)号:WO2011162977A3

    公开(公告)日:2012-03-15

    申请号:PCT/US2011039892

    申请日:2011-06-10

    Abstract: Semiconductor structures are disclosed that have embedded stressor elements therein. The disclosed structures include at least one FET gate stack (18) located on an upper surface of a semiconductor substrate (12). The at least one FET gate stack includes source and drain extension regions (28) located within the semiconductor substrate at a footprint of the at least one FET gate stack. A device channel (40) is also present between the source and drain extension regions (28) and beneath the at least one gate stack (18). The structure further includes embedded stressor elements (33) located on opposite sides of the at least one FET gate stack and within the semiconductor substrate. Each of the embedded stressor elements includes, from bottom to top, a first layer of a first epitaxy doped semiconductor material (35) having a lattice constant that is different from a lattice constant of the semiconductor substrate and imparts a strain in the device channel, a second layer of a second epitaxy doped semiconductor material (36) located atop the first layer, and a delta monolayer of dopant located on an upper surface of the second layer. The structure further includes a metal semiconductor alloy contact (45) located directly on an upper surface of the delta monolayer (37).

    Abstract translation: 公开了在其中具有嵌入的应力元件的半导体结构。 所公开的结构包括位于半导体衬底(12)的上表面上的至少一个FET栅叠层(18)。 所述至少一个FET栅极堆叠包括位于所述至少一个FET栅极堆叠中的覆盖区内的所述半导体衬底内的源极和漏极延伸区域(28)。 器件通道(40)也存在于源极和漏极延伸区域(28)之间并且在至少一个栅极堆叠(18)下方。 该结构还包括位于至少一个FET栅极堆叠的相对侧上并且在半导体衬底内的嵌入式应力元件(33)。 每个嵌入式应力元件包括从底部到顶部具有不同于半导体衬底的晶格常数的晶格常数的第一外延掺杂半导体材料(35)的第一层,并且在器件沟道中施加应变, 位于第一层顶部的第二外延掺杂半导体材料(36)的第二层和位于第二层的上表面上的掺杂剂的Δ单层。 该结构还包括直接位于三角单层(37)的上表面上的金属半导体合金接触(45)。

Patent Agency Ranking