Abstract:
A fan module including: two or more individual fans, each fan having an air movement means and a motor engaged with the air movement means for accelerating air entering each of the two or more individual fans; a temperature sensor for sensing a temperature associated with the two or more fans and for outputting a first signal corresponding to the temperature; rotational speed sensor for outputting a second signal corresponding to a rotational speed of each of the two or more fans; and a processor for receiving the first and second signals and controlling the two or more individual fans based on the first and second signals.
Abstract:
A fan module including: two or more individual fans, each fan having an air movement means and a motor engaged with the air movement means for accelerating air entering each of the two or more individual fans; a temperature sensor for sensing a temperature associated with the two or more fans and for outputting a first signal corresponding to the temperature; rotational speed sensor for outputting a second signal corresponding to a rotational speed of each of the two or more fans; and a processor for receiving the first and second signals and controlling the two or more individual fans based on the first and second signals.
Abstract:
A fan module including: two or more individual fans, each fan having an air movement means and a motor engaged with the air movement means for accelerating air entering each of the two or more individual fans; a temperature sensor for sensing a temperature associated with the two or more fans and for outputting a first signal corresponding to the temperature; rotational speed sensor for outputting a second signal corresponding to a rotational speed of each of the two or more fans; and a processor for receiving the first and second signals and controlling the two or more individual fans based on the first and second signals.
Abstract:
A fan module including: two or more individual fans, each fan having an air movement means and a motor engaged with the air movement means for accelerating air entering each of the two or more individual fans; a temperature sensor for sensing a temperature associated with the two or more fans and for outputting a first signal corresponding to the temperature; rotational speed sensor for outputting a second signal corresponding to a rotational speed of each of the two or more fans; and a processor for receiving the first and second signals and controlling the two or more individual fans based on the first and second signals.
Abstract:
A fan module including: two or more individual fans, each fan having an air movement means and a motor engaged with the air movement means for accelerating air entering each of the two or more individual fans; a temperature sensor for sensing a temperature associated with the two or more fans and for outputting a first signal corresponding to the temperature; rotational speed sensor for outputting a second signal corresponding to a rotational speed of each of the two or more fans; and a processor for receiving the first and second signals and controlling the two or more individual fans based on the first and second signals.
Abstract:
A fan module including: two or more individual fans, each fan having an air movement means and a motor engaged with the air movement means for accelerating air entering each of the two or more individual fans; a temperature sensor for sensing a temperature associated with the two or more fans and for outputting a first signal corresponding to the temperature; rotational speed sensor for outputting a second signal corresponding to a rotational speed of each of the two or more fans; and a processor for receiving the first and second signals and controlling the two or more individual fans based on the first and second signals.
Abstract:
A fan module including: two or more individual fans, each fan having an air movement means and a motor engaged with the air movement means for accelerating air entering each of the two or more individual fans; a temperature sensor for sensing a temperature associated with the two or more fans and for outputting a first signal corresponding to the temperature; rotational speed sensor for outputting a second signal corresponding to a rotational speed of each of the two or more fans; and a processor for receiving the first and second signals and controlling the two or more individual fans based on the first and second signals.
Abstract:
PROBLEM TO BE SOLVED: To provide a simple mechanism for previous extraction of a discontinuous data structure such as a very long data structure repeatedly accessed in the same sequence although being discontinuously stored. SOLUTION: This application provides a method for previously extracting a discontinuous data structure which includes steps of pointing discontinuous data structures to incorporate pointers indicative of the access sequence thereof in each data structure; and previously extracting a targeted data structure based on the access sequence shown by the pointers. COPYRIGHT: (C)2006,JPO&NCIPI
Abstract:
In a massively parallel computing system having a plurality of nodes configured in m multi-dimensions, each node including a computing device, a method for routing packets towards their destination nodes is provided which includes generating at least one of a 2m plurality of compact bit vectors (115, 154) containing information derived from downstream nodes. A multileve l arbitration process (116, 155) in which downstream information stored in the compact vectors, such as link status information and fullness of downstream buffers (130, 140), is used to determine a preferred direction and virtual channel for packet transmission. Preferred direction ranges are encoded and virtual channels are selected by examining the plurality of compact bit vectors (115, 154). This dynamic routing method eliminates the necessity of routing tables, thus enhancing scalability of the switch.
Abstract:
A low latency memory system access is provided in association with a weakly- ordered multiprocessor system(Fig.1). Each processor(12-1, 12-2) in the multiprocessor shares resources, and each shared resource has an associated lock within a locking device(10) that provides support for synchronization between the multiple processors(12-1, 12-2) in the multiprocessor and the orderly sharing of the resources. A processor(12-1, 12-2) only has permissio n to access a resource when it owns the lock associated with that resource, an d an attempt by a processor(12-1, 12-2) to own a l ock requires only a single load operation, rather than a traditional atomic load followed by store, suc h that the processor(12-1, 12-2) only performs a read operation and the hardwa re locking device(10) performs a subsequent write operation rather than the processor(12-1, 12-2).