Nanopore transistor for biosensing

    公开(公告)号:US12188895B2

    公开(公告)日:2025-01-07

    申请号:US17692717

    申请日:2022-03-11

    Applicant: IMEC VZW

    Abstract: A method for forming a nanopore transistor and a nanopore transistor is provided. The method includes: (a) forming an aperture in a filler material by: (i) providing a fin comprising a semiconductor layer and a top layer; (ii) patterning the top layer to form a pillar; (iii) embedding the pillar in a filler material; (iv) removing the pillar, leaving an aperture; (v) lining the aperture with a spacer material; (b) forming a nanopore by etching through the aperture; (b) lining the nanopore with a dielectric, (c) forming a source and a drain by either: between steps a.ii and a.iii, doping the bottom semiconductor layer by using the pillar as a mask, or after step c, filling the aperture with a sealing material, thereby forming a post; removing the filler material; doping the bottom semiconductor layer by using the post as a mask; and removing the sealing material.

    Method for manufacturing a fluid sensor device and a fluid sensor device

    公开(公告)号:US11676851B2

    公开(公告)日:2023-06-13

    申请号:US16957090

    申请日:2018-12-19

    Applicant: IMEC VZW

    CPC classification number: H01L21/76251 G01N27/4145 G01N27/4146 G01N27/4148

    Abstract: According to an aspect of the present inventive concept there is provided a method for manufacturing a fluid sensor device comprising: bonding a silicon-on-insulator arrangement comprising a silicon wafer, a buried oxide, a silicon layer, and a first dielectric layer, to a CMOS arrangement comprising a metallization layer and a planarized dielectric layer, wherein the bonding is performed via the first dielectric layer and the planarized dielectric layer; forming a fin-FET arrangement in the silicon layer, wherein the fin-FET arrangement is configured to function as a fluid sensitive fin-FET arrangement; removing the buried oxide and the silicon wafer; forming a contact to the metallization layer and the fin-FET arrangement, wherein the contact comprises an interconnecting structure configured to interconnect the metallization layer and the fin-FET arrangement; forming a channel comprising an inlet and an outlet, wherein the channel is configured to allow a fluid comprising an analyte to contact the fin-FET arrangement.

    Semiconductor device for detecting fluorescent particles

    公开(公告)号:US10267733B2

    公开(公告)日:2019-04-23

    申请号:US15312116

    申请日:2015-05-22

    Applicant: IMEC VZW

    Abstract: The present disclosure relates to semiconductor devices for detecting fluorescent particles. At least one embodiment relates to an integrated semiconductor device for detecting fluorescent tags. The device includes a first layer, a second layer, a third layer, a fourth layer, and a fifth layer. The first layer includes a detector element. The second layer includes a rejection filter. The third layer is fabricated from dielectric material. The fourth layer is an optical waveguide configured and positioned such that a top surface of the fourth layer is illuminated with an evanescent tail of excitation light guided by the optical waveguide when the fluorescent tags are present. The fifth layer includes a microfluidic channel. The optical waveguide is configured and positioned such that the microfluidic channel is illuminated with the evanescent tail. The detector element is positioned such that light from activated fluorescent tags can be received.

    Semiconductor Device for Detecting Fluorescent Particles

    公开(公告)号:US20170082544A1

    公开(公告)日:2017-03-23

    申请号:US15312116

    申请日:2015-05-22

    Applicant: IMEC VZW

    Abstract: The present disclosure relates to semiconductor devices for detecting fluorescent particles. At least one embodiment relates to an integrated semiconductor device for detecting fluorescent tags. The device includes a first layer, a second layer, a third layer, a fourth layer, and a fifth layer. The first layer includes a detector element. The second layer includes a rejection filter. The third layer is fabricated from dielectric material. The fourth layer is an optical waveguide configured and positioned such that a top surface of the fourth layer is illuminated with an evanescent tail of excitation light guided by the optical waveguide when the fluorescent tags are present. The fifth layer includes a microfluidic channel. The optical waveguide is configured and positioned such that the microfluidic channel is illuminated with the evanescent tail. The detector element is positioned such that light from activated fluorescent tags can be received.

    NANOPORE TRANSISTOR FOR BIOSENSING

    公开(公告)号:US20220334079A1

    公开(公告)日:2022-10-20

    申请号:US17692717

    申请日:2022-03-11

    Applicant: IMEC VZW

    Abstract: A method for forming a nanopore transistor and a nanopore transistor is provided. The method includes: (a) forming an aperture in a filler material by: (i) providing a fin comprising a semiconductor layer and a top layer; (ii) pattering the top layer to form a pillar; (iii) embedding the pillar in a filler material; (iv) removing the pillar, leaving an aperture; (v) lining the aperture with a spacer material; (b) forming a nanopore by etching through the aperture; (b) lining the nanopore with a dielectric, (c) forming a source and a drain by either: between steps a.ii and a.iii, doping the bottom semiconductor layer by using the pillar as a mask, or after step c, filling the aperture with a sealing material, thereby forming a post; removing the filler material; doping the bottom semiconductor layer by using the post as a mask; and removing the sealing material.

    Calibration of Micro-Mirror Arrays
    7.
    发明申请
    Calibration of Micro-Mirror Arrays 有权
    微镜阵列校准

    公开(公告)号:US20130187669A1

    公开(公告)日:2013-07-25

    申请号:US13746149

    申请日:2013-01-21

    Applicant: IMEC

    Abstract: A built-in self-calibration system and method for a micro-mirror array device, for example, operating as a variable focal length lens is described. The calibration method comprises determining a capacitance value for each micro-mirror element in the array device at a number of predetermined reference angles to provide a capacitance-reference angle relationship. From the capacitance values, an interpolation step is carried to determine intermediate tilt angles for each micro-mirror element in the array. A voltage sweep is applied to the micro-mirror array and capacitance values, for each micro-mirror element in the array, are measured. For a capacitance value that matches one of the values in the capacitance-reference angle relationship, the corresponding voltage is linked to the associated tilt angle to provide a voltage-tilt angle characteristic which then stored in a memory for subsequent use.

    Abstract translation: 描述了用作微反射镜阵列器件的内置自校准系统和方法,例如作为可变焦距透镜操作。 校准方法包括以多个预定参考角度确定阵列器件中的每个微镜元件的电容值,以提供电容参考角度关系。 根据电容值,进行插值步骤以确定阵列中的每个微镜元件的中间倾斜角度。 对微镜阵列施加电压扫描,并测量阵列中每个微镜元件的电容值。 对于与电容参考角度关系中的一个值匹配的电容值,相应的电压与相关联的倾斜角度相关联,以提供电压倾斜角特性,然后将其存储在存储器中用于随后的使用。

    Method for Fabricating a Microfluidic Device

    公开(公告)号:US20210300752A1

    公开(公告)日:2021-09-30

    申请号:US17203026

    申请日:2021-03-16

    Applicant: IMEC VZW

    Abstract: A method for fabricating a microfluidic device includes providing an assembly that includes a first silicon substrate having a hydrophilic silicon oxide top surface that includes a microfluidic channel and a second silicon substrate having a hydrophilic silicon oxide bottom surface directly bonded on the top surface of the first silicon substrate, the second silicon substrate including fluidic access holes giving fluidic access to the microfluidic channel. The method also includes exposing the assembly to oxidative species including one or more oxygen atoms and to heat so as to form silicon oxide at a surface of the access holes and of the microfluidic channel.

    Micro-mirror arrays
    9.
    发明授权
    Micro-mirror arrays 有权
    微镜阵列

    公开(公告)号:US09217861B2

    公开(公告)日:2015-12-22

    申请号:US14373071

    申请日:2013-01-18

    Applicant: IMEC VZW

    Abstract: Micro-mirror arrays configured for use in a variable focal length lens are described herein. An example variable focal length lens comprises a micro-mirror array having a plurality of micro-mirror elements arranged in at least a first section and a second section. Each micro-mirror element has a tilt axis and comprises, on each of two opposing sides of the tilt axis, (i) at least one actuation electrode, (ii) at least one measurement electrode, and (iii) at least one stopper. Additionally, each micro-mirror element in the first section has a first tilt angle range, and each micro-mirror element in the second section has a second tilt angle range, with the first tilt angle range being less than the second tilt angle range.

    Abstract translation: 这里描述了配置用于可变焦距透镜的微镜阵列。 示例性可变焦距透镜包括具有布置在至少第一部分和第二部分中的多个微反射镜元件的微反射镜阵列。 每个微镜元件具有倾斜轴线,并且在倾斜轴线的两个相对侧的每一侧上包括(i)至少一个致动电极,(ii)至少一个测量电极,和(iii)至少一个止动器。 此外,第一部分中的每个微镜元件具有第一倾斜角范围,并且第二部分中的每个微镜元件具有第二倾斜角范围,其中第一倾斜角度范围小于第二倾斜角范围。

    Calibration of micro-mirror arrays
    10.
    发明授权
    Calibration of micro-mirror arrays 有权
    微镜阵列的校准

    公开(公告)号:US09201241B2

    公开(公告)日:2015-12-01

    申请号:US13746149

    申请日:2013-01-21

    Applicant: IMEC

    Abstract: A built-in self-calibration system and method for a micro-mirror array device, for example, operating as a variable focal length lens is described. The calibration method comprises determining a capacitance value for each micro-mirror element in the array device at a number of predetermined reference angles to provide a capacitance-reference angle relationship. From the capacitance values, an interpolation step is carried to determine intermediate tilt angles for each micro-mirror element in the array. A voltage sweep is applied to the micro-mirror array and capacitance values, for each micro-mirror element in the array, are measured. For a capacitance value that matches one of the values in the capacitance-reference angle relationship, the corresponding voltage is linked to the associated tilt angle to provide a voltage-tilt angle characteristic which then stored in a memory for subsequent use.

    Abstract translation: 描述了用作微反射镜阵列器件的内置自校准系统和方法,例如作为可变焦距透镜操作。 校准方法包括以多个预定参考角度确定阵列器件中的每个微镜元件的电容值,以提供电容参考角度关系。 根据电容值,进行插值步骤以确定阵列中的每个微镜元件的中间倾斜角度。 对微镜阵列施加电压扫描,并测量阵列中每个微镜元件的电容值。 对于与电容参考角度关系中的一个值匹配的电容值,相应的电压与相关联的倾斜角度相关联,以提供电压倾斜角特性,然后将其存储在存储器中用于随后的使用。

Patent Agency Ranking