Abstract:
PROBLEM TO BE SOLVED: To provide a semiconductor device in which mobility of carriers in a transistor can be improved. SOLUTION: The semiconductor device 100 is provided with an n-channel transistor 118 arranged on a semiconductor substrate, a p-channel transistor 116 arranged on the semiconductor substrate, and a piezoelectric liner 110 adjacent to the n-channel transistor 118 and the p-channel transistor 116. COPYRIGHT: (C)2007,JPO&INPIT
Abstract:
PROBLEM TO BE SOLVED: To provide: a measurement system by which corner rounding is reduced; a measurement method; an alteration of a mask; and a lithography process. SOLUTION: A method of manufacturing a semiconductor device includes providing a mask having a plurality of corner rounding test patterns formed thereon. A layer of photosensitive material of a first semiconductor device is patterned with a plurality of corner rounding test features using the mask and a lithography process. An amount of the corner rounding of the lithography process is measured by analyzing the plurality of corner rounding test features formed on the layer of photosensitive material of the semiconductor device, compared with a plurality of other corner rounding test features. The lithography process or the mask is altered in response to the amount of corner rounding measured, and a second semiconductor device is provided. The second semiconductor device is processed using the altered lithography process or the altered mask. COPYRIGHT: (C)2008,JPO&INPIT
Abstract:
PROBLEM TO BE SOLVED: To provide a method for inhibiting plug oxidation during the manufacturing of a capacitor. SOLUTION: A ferroelectric capacitor device is provided with a substrate 5, a plug 4 passing through the substrate 5, an electrically insulating layer 6 formed on the substrate 5, a first electrode 8 formed on the electrically insulating layer 6, a ferroelectric layer 10 formed on the first electrode 8, and a second electrode 12 formed on the ferroelectric layer 10. The first electrode 8 is electrically connected to the plug 4 through the electrically insulating layer 6 and an inter-layer insulating film 34 is formed on the electrical connection portion. COPYRIGHT: (C)2009,JPO&INPIT
Abstract:
A method for forming a crystalline dielectric layer deposits an amorphous metallic oxide dielectric layer on a surface. The amorphous metallic oxide dielectric layer is treated with a plasma at a temperature of less than or equal to 400 degrees Celsius to form a crystalline layer.
Abstract:
The present invention provides a sidewall oxygen diffusion barrier and method for fabricating the sidewall oxygen diffusion barrier to reduce the diffusion of oxygen to contact plugs during CW hole reactive ion etch processing of a ferroelectric capacitor of an FeRAM device. In one embodiment the sidewall barrier is formed from a substrate fence, while in another embodiment the sidewall barrier is formed by etching back an oxygen barrier.
Abstract:
A semiconductor chip in which stress on the effective stress on the substrate is reduced in order to reduce bowing. To reduce the effective stress, a stress compensation layer is provided on the backside of the chip. The stress compensating layer produces a stress opposite of that produced by the IC. Thus the overall or effective stress on the substrate is reduced.
Abstract:
Eine Prozesssteuermethode, umfassend: Beeinflussen eines ersten Halbleitererzeugnisses (220), verwendend einen ersten Prozess (202); Messen (204) einer Wirkung des ersten Prozesses (202) auf dem ersten Halbleitererzeugnis (220); Beeinflussen des ersten Halbleitererzeugnisses (220), verwendend mindestens einen zweiten Prozess (206); Messen (208) einer Wirkung des mindestens einen zweiten Prozesses (204) auf dem ersten Halbleitererzeugnis (220); Vorwärtskoppeln (270) und Rückkoppeln (262, 272) der auf dem ersten Halbleitererzeugnis (220) gemessenen Wirkung des ersten Prozesses (202) und Rückkoppeln (266b, 266a) der auf dem ersten Halbleitererzeugnis (220) gemessenen Wirkung des mindestens einen zweiten Prozesses (206); Verändern des ersten Prozesses (202), des mindestens einen zweiten Prozesses (206), oder sowohl des ersten Prozesses (202) als auch des mindestens einen zweiten Prozesses (206), basierend auf den vorwärtsgekoppelten (270) und rückgekoppelten (262, 272) gemessenen Wirkungen des ersten Prozesses (202) und den rückgekoppelten (266b, 266a) gemessenen Wirkungen des mindestens einen zweiten Prozesses (206); und Beeinflussen eines zweiten Halbleitererzeugnisses, verwendend den veränderten ersten Prozess (202) und/oder den veränderten mindestens einen zweiten Prozess (206), worin das zweite Halbleitererzeugnis weniger Wafer-zu-Wafer- und Rohchip-zu-Rohchip-Variationen hat in kritischen Abmessungen der Merkmale als das erste Halbleitererzeugnis (220), worin der erste Prozess (202) einen Lithografieprozess umfasst, und worin der mindestens eine zweite Prozess (206) einen Ätzprozess umfasst, worin Verändern des ersten Prozesses (202) umfasst, Reduzieren von Rohchip-zu-Rohchip-Variationen, und worin Verändern des zweiten Prozesses (206) umfasst, Reduzieren von Wafer-zu-Wafer-Variationen, worin der erste Prozess (202) umfasst sequenzielles Bestrahlen einer Vielzahl von Abschnitten des ersten Halbleitererzeugnisses, worin Verändern des ersten Prozesses (202) umfasst, Verändern eines Bestrahlungsprozesses für einen ersten Abschnitt des zweiten Halbleitererzeugnisses, aber nicht Verändern eines Bestrahlungsprozesses für einen zweiten Abschnitt des zweiten Halbleitererzeugnisses.
Abstract:
A method for fabricating a device and a device, such as a ferroelectric capacitor, having a substrate, a contact plug through the substrate, a first barrier layer on the substrate, a first electrode on the first barrier layer, a dielectric layer on the first electrode, and a second electrode on the dielectric layer, comprises etching the second electrode and the dielectric layer of the device using a first hardmask, to shape the second electrode and the dielectric layer. The first hardmask is then removed and one or more encapsulating layers are applied to the second electrode and the dielectric layer. A further hardmask is applied to the one or more encapsulating layers. The first electrode is then etched according to the second hardmask down to the first barrier layer and the second hardmask is then removed from the one or more encapsulating layers.
Abstract:
In semiconductor device fabrication processes which include the formation of hardmask elements 17 including Al2O2, unwanted Al2O3 is left between the hardmask elements 17. The unwanted Al2O3 includes a layer 9 of Al2O3which is not homogenous across the surface of the structure 3 it overlies, and Al2O3 deposits on the sides of the hardmask elements 17. A method is proposed in which any such unwanted Al2O3 between the hardmask elements 17 is removed by a wet etching step in which the unwanted Al2O3 is exposed to an etchant liquid which etches the Al2O3 at a faster rate than other portions of the structure. This step allows the unwanted Al2O3 to be removed substantially completely without causing significant detriment to those other portions of the structure. Subsequently, an RIE etching step can be performed using the hardmask elements 17 as a mask, without the unwanted Al2O3 obstructing the RIE etching step.