Abstract:
A memory cell having a capacitor with top and bottom electrodes with a dielectric layer between is described. The bottom electrode is coupled to a first diffusion region of a transistor by a bottom electrode plug. A dielectric layer covers the capacitor. Above the dielectric layer is a first barrier layer. A via is created in the dielectric layer in which a plug is formed to couple to the second diffusion region. The via comprises substantially vertical sidewalls. A second barrier layer lines the sidewalls of the via. A conductive material is then deposited on the substrate, filling the via to form the plug. By providing the first and second barrier layers, the diffusion of hydrogen which can adversely impact the capacitor is reduced, thereby improving the reliability.
Abstract:
Reduced radiation damage to an IC feature is disclosed. At least a portion of the feature which is sensitive to radiation is covered by a radiation protection layer. The radiation protection layer protects the feature from being damaged to radiation during, for example, processing of the IC. In one embodiment, the radiation protection layer comprises a noble metal, oxides, alloys, or compounds thereof.
Abstract:
A semiconductor chip in which stress on the effective stress on the substrate is reduced in order to reduce bowing. To reduce the effective stress, a stress compensation layer is provided on the backside of the chip. The stress compensating layer produces a stress opposite of that produced by the IC. Thus the overall or effective stress on the substrate is reduced.
Abstract:
The invention includes a wafer having a poly silicon plug passing through a CP-contact. The poly silicon plug is formed from a relatively heavily doped poly silicon layer and a relatively lightly doped poly silicon layer. The relatively lightly doped poly silicon layer passes through the relatively heavily doped poly silicon layer to extend beyond the relatively heavily doped poly silicon layer towards the surface of the wafer. A barrier layer covers top and side walls of the relatively lightly doped poly silicon layer for reducing oxidation at the surface of the poly silicon plug. The wafer is fabricated by depositing a relatively heavily doped poly silicon layer in a CP-contact, depositing a relatively lightly doped poly silicon layer to pass through the relatively heavily doped poly silicon layer, and depositing a barrier layer to cover top and side walls of the relatively lightly doped poly silicon layer to reduce oxidation at the surface of the poly silicon plug.
Abstract:
A multi-layer barrier for a ferroelectric capacitor includes an outdiffusion barrier layer permeable to both hydrogen and oxygen. The outdiffusion barrier layer covers the ferroelectric of the capacitor. Oxygen passes through the outdiffusion barrier layer into the ferroelectric during an oxygen anneal in order to repair damage to the ferroelectric caused during etching. The outdiffusion barrier layer reduces the decomposition of the ferroelectric by blocking molecules leaving the ferroelectric during the oxygen anneal. The multi-layer barrier also includes a hydrogen barrier layer deposited on the outdiffusion barrier layer after repair of the ferroelectric by the oxygen anneal. The hydrogen barrier layer allows the multi-layer barrier to block the passage of hydrogen into the ferroelectric during back-end processes.
Abstract:
The invention includes a wafer having a poly silicon plug passing through a CP-contact. The poly silicon plug is formed from a relatively heavily doped poly silicon layer and a relatively lightly doped poly silicon layer. The relatively lightly doped poly silicon layer passes through the relatively heavily doped poly silicon layer to extend beyond the relatively heavily doped poly silicon layer towards the surface of the wafer. A barrier layer covers top and side walls of the relatively lightly doped poly silicon layer for reducing oxidation at the surface of the poly silicon plug. The wafer is fabricated by depositing a relatively heavily doped poly silicon layer in a CP-contact, depositing a relatively lightly doped poly silicon layer to pass through the relatively heavily doped poly silicon layer, and depositing a barrier layer to cover top and side walls of the relatively lightly doped poly silicon layer to reduce oxidation at the surface of the poly silicon plug.
Abstract:
In a method for the reversible oxidation protection of microcomponents, a substrate is provided, a silicon nitride layer is provided on the substrate in order to protect it against oxidation, an insulation layer is applied to the silicon nitride layer, and a reoxidation process is carried out. In the reoxidation process are generated oxygen radicals which are passed through the insulation layer to the silicon nitride layer in order to convert silicon nitride of the nitride layer into silicon dioxide.
Abstract:
A production process for a semiconductor structure comprises preparing a silicon semiconductor substrate (1) with a trench (2), filling the trench with spin-on-glass (4) there being an oxide layer (6) between substrate and spin-on-glass and performing a thermal curing step to cure and densify the spin-on-glass.
Abstract:
In order to measure a surface profile of a sample, an imprint of the surface profile to be examined is produced in a transfer material. The sample contains processed semiconductor material and is in particular a patterned semiconductor wafer or part of a patterned semiconductor wafer. The transfer material is deformable and curable under suitable ambient conditions. The transfer material may be a thermoplastic material or a material which is deformable as desired after application on a substrate and cures in one case by means of irradiation with photons having a suitable wavelength or alternatively heating. The transfer material may be configured in such a way that the imprint produced is the same size as or alternatively of smaller size than the surface profile. The imprint produced is subsequently measured by known methods.