Abstract:
A Top Oxide Method is used to form an oxide layer over an array of vertical transistors as in a trench dynamic random access memory (DRAM) array with vertically stacked access metal oxide semiconductor field effect transistors (MOSFETs). The Top Oxide is formed by first forming the vertical devices with the pad nitride (16) remaining in place. Once the devices have been formed and the gate polysilicon (18) has been planarized down to the surface of the pad nitride, the pad nitride is stripped away leaving the tops of the gate polysilicon plugs extending above the active silicon surface. This pattern of polysilicon plugs defines the pattern over which the Top Oxide is deposited. The deposited Top Oxide (21) fills the regions between and on top of the polysilicon plugs. The Top Oxide is than planarized back to the tops of the polysilicon plugs so contacts can be made between the passing interconnects and the gates of the vertical devices. The Top Oxide layer serves to separate the passing interconnects from the active silicon thereby reducing capacitive coupling between the two levels and providing a robust etch-stop layer for the reactive ion etch (RIE) patterning of the subsequent interconnect level.
Abstract:
A high density plasma deposition process for eliminating or reducing a zipper-like profile of opened-up voids in a poly trench fill by controlling separation between a transfer gate and storage node in a vertical DRAM, comprising: etching a recess or trench into poly Si of a semiconductor chip; forming a pattern of SiN liner using a mask transfer process for formation of a single sided strap design; removing the SiN liner and etching adjacent collar oxide away from a top part of the trench; depositing a high density plasma (HDP) polysilicon layer in the trench by flowing either SiH4 or SiH4 + H2 in an inert ambient; employing a photores ist in the trench and removing the high density plasma polysilicon layer from a top surface of the semiconductor to avoid shorting in the gate conductor either by spinning on resist and subsequent chemical mechanical polishing or chemical mechanical downstream etchback of the polysilicon layer; and stripping the photoresist and depositing a top trench oxide by high density plasma.
Abstract:
A method for forming metallizations for semiconductor devices, in accordance with the present invention, includes forming trenches (107) in a dielectric layer (104), depositing a single layer diffusion barrier (116) in the trenches, and without an air-brake, depositing a seed layer (118) of metal on the surface of the diffusion barrier. The trenches are then filled with metal (120). The metal adheres to the seed layer, which adheres to the diffusion barrier to provide many improvements in electrical characteristics as well as to reduce failures in the semiconductor devices.
Abstract:
A method of providing isolation between element regions of a semiconductor memory device (200). Isolation trenches (211) are filled using several sequential anisotropic insulating material (216/226/230) HPD-CVD deposition processes, with each deposition process being followed by an isotropic etch back to remove the insulating material (216/226/230) from the isolation trench (211) sidewalls. A nitride liner (225) may be deposited after isolation trench (211) formation. A top portion of the nitride liner (225) may be removed prior to the deposition of the top insulating material (230) layer.