Abstract:
A damascene method of forming conductive lines in an integrated circuit chip. Trenches are etched by a plasma formed by capacitively coupling a gas mixture at 500 to 3000watts under a pressure of 50 - 400mTorr. The gas mixture includes 2 - 30sccm of C4F8 2
Abstract:
A process for producing very high-density embedded DRAM/very high-performance logic structures comprising fabricating vertical MOSFET DRAM cells with salicided source/drain and gate conductor dual workfunction MOSFETs in the supports, comprising: Forming a french capacitor in a silicon substrate having a gate oxide layer, a polysilicon layer, and a top dialectric nitride layer deposited thereon; Applying a patterned mask over the array and support areas and forming recesses in the nitride layer, the polysilicon layer, and shallow trench isolation region; Forming a silicide and oxide cap in the recesses in the nitride layer, the polysilicon layer, and shallow trench isolation region; Applying a block mask to protect the supports while stripping the nitride layer from the array and etching the exposed polysilicon layer to the top of the gate oxide layer; Striping the nitride layer from the support region and depositing a polysilicon layer over the array and support areas; Applying a mask to pattern and form a bitline diffusion stud landing pad in the array and gate conductors for the support transistors; Saliciding the tops of the landing pad and the gate conductors; Applying an interlevel oxide layer and then opening vias in the interlevel oxide layer for establishing conductive wiring channels.
Abstract:
In order to form a cavity for a fusible link in a semiconductor device, an etchable material is applied over and around a portion of the fusible link and the etchable material is coated with a protection layer. The access abutting the etchable material is formed through the protection layer. After the removal of the etchable material, the access is partially filled with a refilling material to thereby form the cavity.
Abstract:
A damascene method of forming conductive lines in an integrated circuit chip. Trenches are etched by a plasma formed by capacitively coupling a gas mixture at 500 to 3000watts under a pressure of 50 - 400mTorr. The gas mixture includes 2 - 30sccm of C4F8, 20 - 80sccm of CO, 2 - 30sccm of O2 and 50 - 400sccm of Ar. Gas flow can be adjusted to an optimum level, thereby achieving a high degree of uniformity. Wafers falling below a selected uniformity may be reworked. A damascene wiring layer formed in the trenches with an acceptable flow exhibit a high degree of sheet resistance uniformity and improved line to line shorts yield.
Abstract:
A method for fabricating a semiconductor memory with a split level folded bitline structure consisting of three contact levels, in accordance with the present invention, includes forming gate structures (204) for transistors in an array region (212) and a support region (214) of a substrate (202). First contacts (222) are formed down to diffusion regions between the gate structures in the array region. The first contacts have a height which is substantially the same for all first contacts in the array region. Second contacts (232) are formed between first level bitlines (234) in the array region and a first portion of the first contacts, while forming second contacts (236 and 260) to a first metal layer (233, 264) from the gate structures (204) and diffusion regions (262) in the support region. Third contacts (246) are formed between second level bitlines in the array region and a second portion of the first contacts, while forming third contacts to a second metal layer (251, 268) from the first metal layer in the support region.
Abstract:
A process for producing very high-density embedded DRAM/very high-performance logic structures comprising fabricating vertical MOSFET DRAM cells with salicided source/drain and gate conductor dual workfunction MOSFETs in the supports.