Abstract:
PROBLEM TO BE SOLVED: To develop novel substrates/circuit boards achieving faster speed and higher performance in order to provide a desirable microelectronic substrate. SOLUTION: The microelectronic substrate including at least one microelectronic die disposed within an opening in a microelectronic substrate core, wherein an encapsulation material is disposed within portions of the opening not occupied by the microelectronic dice, or a plurality of microelectronic dice encapsulated without the microelectronic substrate core. Interconnection layers of dielectric materials and conductive traces are then fabricated on the microelectronic die, the encapsulation material, and the microelectronic substrate core (if present) to form the microelectronic substrate. COPYRIGHT: (C)2009,JPO&INPIT
Abstract:
A microelectronic package including a microelectronic die disposed within an opening in a microelectronic packaging core, wherein an encapsulation material is disposed within portions of the opening not occupied by the microelectronic die. Build-up layers of dielectric materials and conductive traces are then fabricated on the microelectronic die, the encapsulant material, and the microelectronic package core to form the microelectronic package.
Abstract:
Methods and apparatuses are disclosed for forming an under bump metallizaton structure that includes a refractory hydride layer. The refractory layer is formed during rapid thermal processing wherein ambient hydrogen is used in the thermal processing chamber. Rapid thermal processing may occur at a temperature approximately in the range of 350 DEG C approximately 550 DEG C.
Abstract:
A microelectronic substrate including at least one microelectronic die disposed within an opening in a microelectronic substrate core, wherein an encapsulation material is disposed within portions of the opening not occupied by the microelectronic dice, or a plurality microelectronic dice encapsulated without the microelectronic substrate core. Interconnection layers of dielectric materials and conductive traces are then fabricated on the microelectronic die, the encapsulation material, and the microelectronic substrate core (if present) to form the microelectronic substrate.
Abstract:
A microelectronic substrate including at least one microelectronic die disposed within an opening in a microelectronic substrate core, wherein an encapsulation material is disposed within portions of the opening not occupied by the microelectronic dice, or a plurality microelectronic dice encapsulated without the microelectronic substrate core. Interconnection layers of dielectric materials and conductive traces are then fabricated on the microelectronic die, the encapsulation material, and the microelectronic substrate core (if present) to form the microelectronic substrate.
Abstract:
One embodiment of the invention relates to a polymer memory device and a method of making it. The polymer memory device may include a composite or single layer of a ferroelectric polymer memory that addresses surface engineering needs according to various embodiments. The ferroelectric polymer memory structure may include crystalline ferroelectric polymer layers such as single and co-polymer compositions. The structure may include spin-on and/or Langmuir-Blodgett deposited compositions. One embodiment of the invention relates to a method making embodiments of the polymer memory device. One embodiment of the invention relates to a memory system that allows the polymer memory device to interface with various existing hosts.
Abstract:
A microelectronic substrate including at least one microelectronic die disposed within an opening in a microelectronic substrate core, wherein an encapsulation material is disposed within portions of the opening not occupied by the microelectronic dice, or a plurality microelectronic dice encapsulated without the microelectronic substrate core. Interconnection layers of dielectric materials and conductive traces are then fabricated on the microelectronic die, the encapsulation material, and the microelectronic substrate core (if present) to form the microelectronic substrate.
Abstract:
A microelectronic substrate including at least one microelectronic die disposed within an opening in a microelectronic substrate core, wherein an encapsulation material is disposed within portions of the opening not occupied by the microelectronic dice, or a plurality microelectronic dice encapsulated without the microelectronic substrate core. Interconnection layers of dielectric materials and conductive traces are then fabricated on the microelectronic die, the encapsulation material, and the microelectronic substrate core (if present) to form the microelectronic substrate.