Abstract:
The present invention is a system and method for use in a CDMA communication system including a plurality of base stations and a user equipment (UE), each for communicating with each other. The base station has a transmitter which includes a first and second antenna for transmitting a data field of symbols. The first spreading device spreads the first data field using a first channelization code and the second spreading device spreads the second data field using a second channelization code, each channelization code being uniquely associated with one of the first and second antennas. The UE has a receiver for receiving a signal including the first and second spread data fields. The UE includes a joint detection device for detecting the symbols of the first and second data fields using the first and second channelization codes and a decoder for decoding the detected data fields to generate a single data field of symbols.
Abstract:
Data from a plurality of communications is transmitted in a code division multiple access communication system. The transmitted communications are received. Gain factors are determined for at least one of the received communications. Data of the received communications is detected using a scaling factor derived from the determined gain values.
Abstract:
A plurality of communication signals is received. Each communication signal has an associated code. At least two of the communication signals has a different spreading factor. The associated codes have a scrambling code period. A total system response matrix has blocks. Each block has one dimension of a length M and another dimension of a length based on in part M and the spreading factor of each communication. M is based on the scrambling code period. Data of the received plurality of communication signals is received using the constructed system response matrix.
Abstract:
Method and apparatus for interference signal code power noise variance estimation employing a reduced number of samples utilizing the equation (15), where (14), where (I), where (I), where (12) and where (13). As an alternative, a recursive technique may be employed wherein the noise variance is estimated from the ignored coefficients of the estimated channel output and upgraded recursively as per the following: (II) where ĥi(j) are the channel estimates after the post processing and the noise variance estimates sigman-12, and the initial values of ĥi(j) are all zeros.
Abstract:
The present invention is a system and method for transmitting data symbols in a CDMA communication system including a transmitter having an antenna array and a receiver. The system generates a first and second data field of symbols, then encodes them to produce complex conjugates of the respective symbols. A first communication burst including the first and second data fields, which are separated by a midamble, over a first antenna, and a second communication burst produced using said complex conjugates of said first and second data fields, which are separated by a midamble, over a second antenna are then transmitted by the transmitter. The receiver then receives and decodes the first and second communication bursts to recover the first and second data fields.
Abstract:
The present invention is a method and system for receiving data transmitted using block space time transmit diversity (BSTTD) in a code division multiple access (CDMA) communication system. The system comprises a transmitter, for transmitting a first data field using a first antenna and a second data field using a second antenna, and a receiver. The receiver includes an antenna for receiving the first and second transmitted data fields, and a BSTTD joint detector which determines symbols of the first and second transmitted data fields using a minimum means square error block linear equalizer model and an approximated Cholesky decomposition of the model.
Abstract:
An insertion sorter circuit (200) and method are provided which are particularly useful for sorting channel response values of a communication signal. The sorter circuit includes a series of sorter elements (1501-150N) which each have a register (1011-101N). The circuit is configured to cascade values downwardly when one register receives a greater value than it has stored (1021-102N), which value is not greater than the value stored in any upstream register. At the end of processing the values, the most significant values are stored in the registers (1011-101N), the sum (105) of which are the channel power estimate. The channel noise (106) variance is obtainable by applying a system dependent scaling factor to the sum (105) of the least significant values processed.
Abstract:
A code indexing method for orthogonal variable spreading factor (OVSF) codes introduces a single number mapped to the each code. The new code number itself not only provides the code signature, but it is also used for the OVSF code generation. In addition, it provides easy and fast generation of the available code list without the help of look-up table. This capability improves the dynamic code assignment.
Abstract:
Method and apparatus for interference signal code power noise variance estimation employing a reduced number of samples utilizing the equation (15), where (14), where (I), where (I), where (12) and where (13). As an alternative, a recursive technique may be employed wherein the noise variance is estimated from the ignored coefficients of the estimated channel output and upgraded recursively as per the following: (II) where ĥi(j) are the channel estimates after the post processing and the noise variance estimates σn-12, and the initial values of ĥi(j) are all zeros.