Abstract:
A portable telepresence apparatus that is adapted to be coupled to a remote station that has a station monitor, a station camera, a station speaker and a station microphone, comprising: a housing; a first camera coupled to said housing; a monitor that is coupled to said housing and is adapted to display images captured by the station camera; a speaker that is coupled to said housing and is adapted to generate a sound provided through the station microphone; a microphone coupled to said housing; a battery coupled to said housing; a wireless transceiver coupled to said housing; and a viewfinder screen coupled to said housing.
Abstract:
A tele-presence system that includes a cart. The cart includes a robot face that has a robot monitor, a robot camera, a robot speaker, a robot microphone, and an overhead camera. The system also includes a remote station that is coupled to the robot face and the overhead camera. The remote station includes a station monitor, a station camera, a station speaker and a station microphone. The remote station can display video images captured by the robot camera and/or overhead camera. By way of example, the cart can be used in an operating room, wherein the overhead camera can be placed in a sterile field and the robot face can be used in a non-sterile field. The user at the remote station can conduct a teleconference through the robot face and also obtain a view of a medical procedure through the overhead camera.
Abstract:
A proctoring system that includes a communication device coupled to a remote station. The remote station has a visual display that displays first information relating to an action that causes an effect on an object, and simultaneously displays second information relating to the effect on the object. The remote station includes at least one input device that allows a communication to be transmitted by an operator to the communication device. By way of example, during the deployment of a heart stent, a specialist doctor may remotely view real-time fluoroscopy imagery and patient hemodynamics. The specialist can remotely proctor medical personnel on the proper orientation and timing requirements for installing the stent.
Abstract:
A telepresence robot may include a drive system, a control system, an imaging system, and a mapping module. The mapping module may access a plan view map of an area and tags associated with the area. In various embodiments, each tag may include tag coordinates and tag information, which may include a tag annotation. A tag identification system may identify tags within a predetermined range of the current position and the control system may execute an action based on an identified tag whose tag information comprises a telepresence robot action modifier. The telepresence robot may rotate an upper portion independent from a lower portion. A remote terminal may allow an operator to control the telepresence robot using any combination of control methods, including by selecting a destination in a live video feed, by selecting a destination on a plan view map, or by using a joystick or other peripheral device.
Abstract:
A tele-presence system that includes a cart. The cart includes a robot face that has a robot monitor, a robot camera, a robot speaker, a robot microphone, and an overhead camera. The system also includes a remote station that is coupled to the robot face and the overhead camera. The remote station includes a station monitor, a station camera, a station speaker and a station microphone. The remote station can display video images captured by the robot camera and/or overhead camera. By way of example, the cart can be used in an operating room, wherein the overhead camera can be placed in a sterile field and the robot face can be used in a non-sterile field. The user at the remote station can conduct a teleconference through the robot face and also obtain a view of a medical procedure through the overhead camera.
Abstract:
A telepresence system that includes a portable telepresence apparatus coupled to a remote control station. The telepresence apparatus comprises a monitor, a camera, a speaker, a microphone and a viewfinder screen coupled to a housing. The view finder screen allows the user to view the image being captured by the camera. The portable telepresence apparatus is a hand held device that can be moved by a holder of the device in response to audio commands from the remote station. The telepresence apparatus can be used by medical personnel to remotely view a patient in a fast and efficient manner.
Abstract:
A tele-presence system that includes a cart. The cart includes a robot face that has a robot monitor, a robot camera, a robot speaker, a robot microphone, and an overhead camera. The system also includes a remote station that is coupled to the robot face and the overhead camera. The remote station includes a station monitor, a station camera, a station speaker and a station microphone. The remote station can display video images captured by the robot camera and/or overhead camera. By way of example, the cart can be used in an operating room, wherein the overhead camera can be placed in a sterile field and the robot face can be used in a non-sterile field. The user at the remote station can conduct a teleconference through the robot face and also obtain a view of a medical procedure through the overhead camera.
Abstract:
Devices, systems, and methods for social behavior of a telepresence robot are disclosed herein. A telepresence robot may include a drive system, a control system, an object detection system, and a social behaviors component. The drive system is configured to move the telepresence robot. The control system is configured to control the drive system to drive the telepresence robot around a work area. The object detection system is configured to detect a human in proximity to the telepresence robot. The social behaviors component is configured to provide instructions to the control system to cause the telepresence robot to operate according to a first set of rules when a presence of one or more humans is not detected and operate according to a second set of rules when the presence of one or more humans is detected.
Abstract:
Devices, systems, and methods for social behavior of a telepresence robot are disclosed herein. A telepresence robot may include a drive system, a control system, an object detection system, and a social behaviors component. The drive system is configured to move the telepresence robot. The control system is configured to control the drive system to drive the telepresence robot around a work area. The object detection system is configured to detect a human in proximity to the telepresence robot. The social behaviors component is configured to provide instructions to the control system to cause the telepresence robot to operate according to a first set of rules when a presence of one or more humans is not detected and operate according to a second set of rules when the presence of one or more humans is detected.