Abstract:
The present invention relates to a method of temporarily and firmly fixing two solids to each other and to a composition used in the method, which is a method of temporarily fixing, comprising temporarily fixing the two solids to each other with a liquid crystal compound or a composition comprising the liquid crystal compound. This method is used for a method of temporarily fixing a pad for chemical mechanical polishing, for example, to polish a wafer for a semiconductor device fixed on a surface of a base plate, when one solid is a pad for chemical mechanical polishing of a wafer for a semiconductor device and the other is a base plate to fix the pad.
Abstract:
A radiation sensitive refractive index changing composition whose refractive index of a material is changed by a simple method, whose changed refractive index difference is sufficiently large, and which can provide a stable refractive index pattern and a stable optical material regardless of their use conditions. The radiation sensitive refractive index changing composition comprises (A) a polymerizable compound, (B) a non-polymerizable compound having a lower refractive index than the polymer of the polymerizable compound (A), and (C) a radiation sensitive polymerization initiator.
Abstract:
A composition which can be changed in refractive index by a simple method to give a refractive-index pattern and an optical material in each of which the resultant difference in refractive index is significantly large and is stabl e regardless of conditions of use thereafter; and a method of forming the pattern or optical material. The composition comprises (A) a decomposable compound, (B) a hydrolyzate of an alkoxide such as tetrabutoxytitanium, tetramethoxyzirconium, tetramethoxygermanium, or tetramethoxysilane or of a halide such as tetrachlorosilane, and (C) a radiation-sensitive decomposer. The composition is sensitive to a radiation.
Abstract:
A radiation sensitive refractive index changing composition comprising (A) a decomposable compound, (B) a non-decomposable compound having a lower refractive index than the decomposable compound (A), (C) a radiation sensitive decomposer and (D) a stabilizer. By exposing the composition to radiation through a pattern mask, the above components (C) and (A) of an exposed portion are decomposed and a refractive index difference is made between the exposed portion and unexposed portion, thereby forming a pattern having different refractive indices.
Abstract:
A radiation sensitive refractive index changing composition comprising (A) a decomposable compound, (B) a non-decomposable compound having a lower refractive index than the decomposable compound (A), (C) a radiation sensitive decomposer and (D) a stabilizer. By exposing the composition to radiation through a pattern mask, the above components (C) and (A) of an exposed portion are decomposed and a refractive index difference is made between the exposed portion and unexposed portion, thereby forming a pattern having different refractive indices.
Abstract:
A liquid crystal aligning agent comprising a polyamic acid containing an aliphatic and/or alicyclic hydrocarbon group and a polyimide containing an aliphatic and/or alicyclic hydrocarbon group; and a liquid crystal display device using the liquid crystal aligning agent. This liquid crystal aligning agent gives a liquid crystal aligning film which has good liquid crystal aligning property and in which pretilt angle can be changed by radiation with a small energy and which is suitable for domain-divided alignment type liquid crystal display having a wide view angle.
Abstract:
A radiation sensitive refractive index changing composition comprising (A) a decomposable compound, (B) a non-decomposable compound having a higher refractive index than the decomposable compound (A), (C) a radiation sensitive decomposer and (D) astabilizer. By exposing this composition to radiation through a pattern mask, the above components (C) and (A) of an exposed portion decompose to create a refractive index difference between the exposed portion and an unexposed portion, thereby forming a pattern having different refractive indices.
Abstract:
A composition having a refractive index sensitively changeable by a radiation which comprises (A) a decomposable compound, (B) a non-decomposable compound having a refractive index lower than that of the decomposable compound (A), (C) a radiation-sensitive decomposing agent, and (D) a stabilizer. The irradiation of the composition with a radiation ray via a mask decomposes the above (C) and (A) components in a irradiated portion, resulting in the occurrence of the difference in refractive index between an irradiated portion and a non-irradiated portion, which leads to the formation of a pattern having regions of different refractive indexes.
Abstract:
A radiation sensitive refractive index changing composition whose refractive index of a material is changed by a simple method, whose changed refractive index difference is sufficiently large, and which can provide a stable refractive index pattern and a stable optical material regardless of their use conditions. The radiation sensitive refractive index changing composition comprises (A) a polymerizable compound, (B) a non-polymerizable compound having a lower refractive index than the polymer of the polymerizable compound (A), and (C) a radiation sensitive polymerization initiator.
Abstract:
A radiation sensitive refractive index changing composition whose refractive index of a material is changed by a simple method, whose changed refractive index difference is sufficiently large, and which can provide a stable refractive index pattern and a stable optical material regardless of their use conditions. The radiation sensitive refractive index changing composition comprises (A) a polymerizable compound, (B) a non-polymerizable compound having a lower refractive index than the polymer of the polymerizable compound (A), and (C) a radiation sensitive polymerization initiator.