Abstract:
In an optical system (20) measuring sample characteristics, by reducing the amount of ambient absorbing gas or gases and moisture present in at least a portion of the illumination and detection paths experienced by vacuum ultraviolet (VUV) radiation (34) used in the measurement process, the attenuation of such wavelength components can be reduced. Such reduction can be accomplished by a process without requiring the evacuation of all gases and moisture from the measurement system (20). In one embodiment, the reduction can be accomplished by displacing at least some of the absorbing gas(es) and moisture present in at least a portion of the measuring paths so as to reduce the attenuation of VUV radiation. In this manner, the sample (42) does not need to be placed in a vacuum, thereby enhancing system throughput.
Abstract:
In an optical system measuring sample characteristics, by reducing the amount of ambient absorbing gas or gases and moisture present in at least a portion of the illumination and detection paths experienced by vacuum ultraviolet (VUV) radiation used in the measurement process, the attenuation of such wavelength components can be reduced. Such reduction can be accomplished by a process without requiring the evacuation of all gases and moisture from the measurement system. In one embodiment, the reduction can be accomplished by displacing at least some of the absorbing gas(es) and moisture present in at least a portion of the measuring paths so as to reduce the attenuation of VUV radiation. In this manner, the sample does not need to be placed in a vacuum, thereby enhancing system throughput.
Abstract:
Various systems for measurement or analysis of a specimen are provided. One system includes a first optical subsystem, which is disposed within a purged environment (224). The purged environment (224) may be provided by a differential purging subsystem. The first optical subsystem performs measurements using vacuum ultraviolet light. This system also includes a second optical subsystem, which is disposed within a non-purged environment. The second optical subsystem performs measurements using non-vacuum ultraviolet light. Another system includes two or more optical subsystems configured to perform measurements of a specimen using vacuum ultraviolet light. The system also includes a purging subsystem configured to maintain a purged environment around the two or more optical subsystems. The purging subsystem is also configured to maintain the same level of purging in both optical subsystems. Some systems also include a cleaning subsystem configured to remove contaminants from a portion of a specimen prior to measurements at vacuum ultraviolet wavelengths.
Abstract:
Various systems for measurement or analysis of a specimen are provided. One system includes a first optical subsystem, which is disposed within a purged environment. The purged environment may be provided by a differential purging subsystem. The first optical subsystem performs measurements using vacuum ultraviolet light. This system also includes a second optical subsystem, which is disposed within a non-purged environment. The second optical subsystem performs measurements using non-vacuum ultraviolet light. Another system includes two or more optical subsystems configured to perform measurements of a specimen using vacuum ultraviolet light. The system also includes a purging subsystem configured to maintain a purged environment around the two or more optical subsystems. The purging subsystem is also configured to maintain the same level of purging in both optical subsystems. Some systems also include a cleaning subsystem configured to remove contaminants from a portion of a specimen prior to measurements at vacuum ultraviolet wavelengths.
Abstract:
Various systems for measurement or analysis of a specimen are provided. One system includes a first optical subsystem, which is disposed within a purged environment. The purged environment may be provided by a differential purging subsystem. The first optical subsystem performs measurements using vacuum ultraviolet light. This system also includes a second optical subsystem, which is disposed within a non-purged environment. The second optical subsystem performs measurements using non-vacuum ultraviolet light. Another system includes two or more optical subsystems configured to perform measurements of a specimen using vacuum ultraviolet light. The system also includes a purging subsystem configured to maintain a purged environment around the two or more optical subsystems. The purging subsystem is also configured to maintain the same level of purging in both optical subsystems. Some systems also include a cleaning subsystem configured to remove contaminants from a portion of a specimen prior to measurements at vacuum ultraviolet wavelengths.