Abstract:
Es sind Systeme und Verfahren zur Detektion, Quantifizierung und Steuerung von prozessinduzierten asymmetrischen Signaturen unter Verwendung von Messungen von strukturierten Wafergeometrien offenbart. Das System kann ein Geometrie-Messwerkzeug aufweisen, das ausgestaltet ist, um einen ersten Satz von Messungen der Wafergeometrie des Wafers vor einem Herstellungsprozess und einen zweiten Satz von Messungen der Wafergeometrie des Wafers nach dem Herstellungsprozess zu erhalten. Das System kann auch einen Prozessor umfassen, der in Kommunikation mit dem Geometrie-Messwerkzeug ist. Der Prozessor kann konfiguriert sein zum: Berechnen einer Karte der Geometrieänderung, basierend auf dem ersten Satz von Messungen der Wafergeometrie und auf dem zweiten Satz von Messungen der Wafergeometrie; Analysieren der Karte der Geometrieänderung, um eine durch den Herstellungsprozess zur Wafergeometrie induzierte asymmetrische Komponente zu detektieren; und Abschätzen eines durch den Herstellungsprozess induzierten, asymmetrischen Overlay-Fehlers auf Basis der in der Wafergeometrie detektierten asymmetrischen Komponente.
Abstract:
Systems and methods for providing improved scanner corrections are disclosed. Scanner corrections provided in accordance with the present disclosure may be referred to as wafer geometry aware scanner corrections. More specifically, wafer geometry and/or wafer shape signature information are utilized to improve scanner corrections. By removing the wafer geometry as one of the error sources that may affect the overlay accuracy, better scanner corrections can be obtained because one less contributing factor needs to be modeled.
Abstract:
A method and apparatus for process control in the processing of a substrate is disclosed in the present invention. Embodiments of the present invention utilize a first analysis tool to determine changes in a substrate's geometry. The substrate geometry data is used to generate sampling plan that will be used to check areas of the substrate that are likely to have errors after processing. The sampling plan is fed forwards to a second analysis tool that samples the substrate after it has been processed.
Abstract:
Disclosed herein is a system and method for enhanced and expanded localized geometry characterization. Objects of interest are classified according to user-defined parameters, and this enables enhanced contrast and more accurate feature detection, as well as more accurately defined feature object regions.
Abstract:
A method and system for modeling and analyzing wafer nanotopography data utilizes a nonlinear contact finite element model. Inputs to the model include lithography chuck parameters and site-based geometry data. Outputs from the model include in-plane distortions and out-of-plane distortions, from which defocus and overlay can be derived.
Abstract:
Disclosed herein is a method to enhance detection and quantification of features in the wafer edge/wafer roll off regions. Modifications and improvements have been made to earlier methods which enable improved accuracy and increased scope of feature detection.
Abstract:
A system for evaluating the metrological characteristics of a surface of a substrate, the system including an optical substrate measurement system, a data analyzing system for analyzing data in an evaluation area on the substrate, applying feature-specific filters to characterize the surface of the substrate, and produce surface-specific metrics for characterizing and quantifying a feature of interest, the surface-specific metrics including a range metric for quantifying maximum and minimum deviations in the evaluation area, a deviation metric for quantifying a point deviation having a largest magnitude in a set of point deviations, where the point deviations are an amount of deviation from a reference plane fit to the evaluation area, and a root mean square metric calculated from power spectral density.
Abstract:
A system and method for enhanced and expanded localized geometry characterization. Objects of interest are enhanced, detected, and classified according to user-defined parameters, and this enables enhanced contrast and more accurate feature detection, as well as more accurately defined feature object regions for feature geometry measurement and characterization.
Abstract:
A method and system for modeling and analyzing wafer nanotopography data utilizes a nonlinear contact finite element model. Inputs to the model include lithography chuck parameters and site-based geometry data. Outputs from the model include in-plane distortions and out-of-plane distortions, from which defocus and overlay can be derived.