Abstract:
Provided is a protein detection system using a micro-cantilever and based on immune responses, wherein the micro-cantilever shows significantly improved sensitivity to allow detection of a trace amount of biomolecule. To the micro-cantilever, sandwich immunoassay is applied, and the sandwich immunoassay uses a polyclonal antibody or silica nanoparticles having a monoclonal antibody bound thereto, so that variations in the output signals of the cantilever are amplified and the detection sensitivity is significantly improved. The system enables detection of disease specific antigen at several femtomolar levels, and makes it possible to detect a trace amount of protein related to diseases, particularly to cancers, with ease.
Abstract:
Disclosed are system and method for measuring a bio-element capable of accurately detecting whether a bio-element such as protein, gene and the like is present in an atmosphere or vapor phase having controlled temperature and humidity thereof and measuring a content of the bio- element. According to an embodiment of the invention, the method comprises steps of preparing a cantilever sensor having a plurality of cantilevers; measuring a basis resonant frequency for the plurality of cantilevers; reacting the cantilevers with a sample including a bio-element; measuring resonant frequencies of the cantilevers after the reaction, in a closed system that is isolated from an exterior environment and temperature and humidity thereof are controlled to a specific state; and calculating variations of the resonant frequencies of the cantilevers before and after the reaction to carry out a quantitative analysis of the bio-element included in the sample.
Abstract:
The present invention relates to a method for preparing a 3D biological bilayer membrane structure in a physiological buffer solution and a 3D biological bilayer membrane structure using the same, and more particularly, to a method for preparing a 3D biological bilayer membrane structure that is tightly sealed even under physiological ionic conditions by applying pressure during electroformation to improve a membrane fusion function, and a 3D biological bilayer membrane structure using the same.
Abstract:
The present invention relates to a method for manufacturing a three-dimensional structure based on a block copolymer. The method comprises the steps of injecting a block copolymer (BCP) solution into each micro-well formed on the substrate and drying it to form a block copolymer layer, and applying a buffer to the block copolymer layer to hydrate the micro-well in three dimensions Forming the structure, after the three-dimensional structure is formed, injecting and curing a hydrogel solution around the three-dimensional structure may include the step of enhancing stability. In particular, the process of hydration by applying a buffer to the micro-well is performed while an electric field is applied. By controlling the concentration of the block copolymer (BCP) and the amplitude and frequency of the electric field, a three-dimensional artificial cell membrane having a desired size and shape, such as a spherical or ciliary shape and high stability (100% survival for 50 days) is manufactured can do. The present invention can be efficiently applied to various biological fields such as artificial cells, cell-mimicking biosensors, and bioreactors.
Abstract:
Provided is a protein detection system using a micro-cantilever and based on immune responses, wherein the micro-cantilever shows significantly improved sensitivity to allow detection of a trace amount of biomolecule. To the micro-cantilever, sandwich immunoassay is applied, and the sandwich immunoassay uses a polyclonal antibody or silica nanoparticles having a monoclonal antibody bound thereto, so that variations in the output signals of the cantilever are amplified and the detection sensitivity is significantly improved. The system enables detection of disease specific antigen at several femtomolar levels, and makes it possible to detect a trace amount of protein related to diseases, particularly to cancers, with ease.
Abstract:
The present disclosure relates to a diagnostic kit capable of accurately diagnosing diseases or disorders related with abnormal aggregation or misfolding of proteins, including disorders or diseases caused by aggregation of β-amyloid such as Alzheimer's disease as well as disorders or diseases caused by aggregation of other proteins, based on concentration analysis of the aggregated proteins before and after dissociation.
Abstract:
Disclosed are system and method for measuring a bio-element capable of accurately detecting whether a bio-element such as protein, gene and the like is present in an atmosphere or vapor phase having controlled temperature and humidity thereof and measuring a content of the bio- element. According to an embodiment of the invention, the method comprises steps of preparing a cantilever sensor having a plurality of cantilevers; measuring a basis resonant frequency for the plurality of cantilevers; reacting the cantilevers with a sample including a bio-element; measuring resonant frequencies of the cantilevers after the reaction, in a closed system that is isolated from an exterior environment and temperature and humidity thereof are controlled to a specific state; and calculating variations of the resonant frequencies of the cantilevers before and after the reaction to carry out a quantitative analysis of the bio-element included in the sample.
Abstract:
The present invention relates to a method for diagnosing a disease using an analysis of oligomer of an abnormal aggregated protein includes: (1) preparing a body fluid sample including at least one of blood, blood plasma, blood serum, saliva, urine, tear, and mucus; (2) making a dilution of the body fluid sample; (3) using a biosensor to measure and detect an aggregated protein in the diluted body fluid sample; (4) analyzing a signal change of the biosensor caused by the dilution of the aggregated protein to determine a slope according to the dilution from the measurements; and (5) analyzing a proportion of the oligomer from the slope according to the dilution to make a diagnosis. The method uses a biosensor to measure the impedance and the protein concentration of blood and detects the slope according to the numerical value of the monomer and the oligomer to diagnose normal or abnormal protein aggregation or the associated diseases with more accuracy.