Abstract:
A method is provided for etching silicon in a plasma processing chamber, having an operating pressure and an operating bias. The method includes: performing a first vertical etch in the silicon to create a hole having a first depth and a sidewall; performing a deposition of a protective layer on the sidewall; performing a second vertical etch to deepen the hole to a second depth and to create a second sidewall, the second sidewall including a first trough, a second trough and a peak, the first trough corresponding to the first sidewall, the second trough corresponding to the second sidewall, the peak being disposed between the first trough and the second trough; and performing a third etch to reduce the peak.
Abstract:
200 mm and 300 mm wafers are processed in vacuum plasma processing chambers that are the same or have the same geometry. Substantially planar excitation coils having different geometries for the wafers of different sizes excite ionizable gas in the chamber to a plasma by supplying electromagnetic fields to the plasma through a dielectric window at the top of the chamber. Both coils include plural symmetrical, substantially circular turns coaxial with a center point of the coil and at least one turn that is asymmetrical with respect to the coil center point. Both coils include four turns, with r.f. excitation being applied to the turn that is closest to the coil center point. The turn that is third farthest from the center point is asymmetric in the coil used for 200 mm wafers. The two turns closest to the coil center point are asymmetric in the coil used for 300 mm wafers.
Abstract:
A method for etching features into an etch layer in a plasma processing chamber, comprising a plurality of cycles is provided. Each cycle comprises a deposition phase and an etching phase. The deposition phase comprises providing a flow of deposition gas, forming a plasma from the deposition gas in the plasma processing chamber, providing a first bias during the deposition phase to provide an anisotropic deposition, and stopping the flow of the deposition gas into the plasma processing chamber. The etching phase, comprises providing a flow of an etch gas, forming a plasma from the etch gas in the plasma processing chamber, providing a second bias during the etch phase, wherein the first bias is greater than the second bias, and stopping the flow of the etch gas into the plasma processing chamber.
Abstract:
200 mm and 300 mm wafers are processed in vacuum plasma processing chambers that are the same or have the same geometry. Substantially planar excitation coils having different geometries for the wafers of different sizes excite ionizable gas in the chamber to a plasma by supplying electromagnetic fields to the plasma through a dielectric window at the top of the chamber. Both coils include plural symmetrical, substantially circular turns coaxial with a center point of the coil and at least one turn that is asymmetrical with respect to the coil center point. Both coils include four turns, with r.f. excitation being applied to the turn that is closest to the coil center point. The turn that is third farthest from the center point is asymmetric in the coil used for 200 mm wafers. The two turns closest to the coil center point are asymmetric in the coil used for 300 mm wafers.
Abstract:
200 mm and 300 mm wafers are processed in vacuum plasma processing chambers that are the same or have the same geometry. Substantially planar excitation coils having different geometries for the wafers of different sizes excite ionizable gas in the chamber to a plasma by supplying electromagnetic fields to the plasma through a dielectric window at the top of the chamber. Both coils include plural symmetrical, substantially circular turns coaxial with a center point of the coil and at least one turn that is asymmetrical with respect to the coil center point. Both coils include four turns, with r.f. excitation being applied to the turn that is closest to the coil center point. The turn that is third farthest from the center point is asymmetric in the coil used for 200 mm wafers. The two turns closest to the coil center point are asymmetric in the coil used for 300 mm wafers.
Abstract:
A semiconductor manufacturing process wherein an organic antireflective coating is etched with an O2-free sulfur containing gas which provides selectivity with respect to an underlying layer and/or minimizes the lateral etch rate of an overlying photoresist to maintain critical dimensions defined by the photoresist. The etchant gas can include SO2 and a carrier gas such as Ar or He and optional additions of other gases such as HBr. The process is useful for etching 0.25 micron and smaller contact or via openings in forming structures such as damascene structures.
Abstract:
An apparatus and method for consecutively processing a series of semiconductor substrates with minimal plasma etch rate variation following cleaning with fluorine- containing gas and/or seasoning of the plasma etch chamber. The method includes steps of (a) placing a semiconductor substrate on a substrate support in a plasma etching chamber, (b) maintaining a vacuum in the chamber, (c) etching an exposed surface of the substrate by supplying an etching gas to the chamber and energizing the etching gas to form a plasma in the chamber, (d) removing the substrate from the chamber; and (e) consecutively etching additional substrates in the chamber by repeating steps (a-d), the etching step being carried out by minimizing a recombination rate of H and Br on a silicon carbide edge ring surrounding the substrate at a rate sufficient to offset a rate at which Br is consumed across the substrate. The method can be carried out using pure HBr or combination of HBr with other gases.
Abstract:
PROBLEM TO BE SOLVED: To provide the method of countermeasure for the change of critical dimension caused by etching of photoresist of an upper layer into lateral direction employing gas containing O 2 in the dry etching of an organic reflection preventing film. SOLUTION: In a semiconductor manufacturing process, an organic reflection preventing film provides selectivity for a lower layer and/or minimizes the etching speed in the lateral direction of photoresist of an upper layer which maintains a critical dimension determined by a photo resist. Accordingly, SO 2 is employed as etchant gas and He, Ar or the like is employed as the carrier gas in the dry etching of the organic reflection preventing film. Another gas such as HBr or the like is added on optional target. This process is useful for the etching of contact opening or beer opening of not more than 0.25 μm upon forming a structure such as a damascene structure or the like. COPYRIGHT: (C)2010,JPO&INPIT
Abstract:
200 mm and 300 mm wafers are processed in vacuum plasma processing chambers that are the same or have the same geometry. Substantially planar excitation coils having different geometries for the wafers of different sizes excite ionizable gas in the chamber to a plasma by supplying electromagnetic fields to the plasma through a dielectric window at the top of the chamber. Both coils include plural symmetrical, substantially circular turns coaxial with a center point of the coil and at least one turn that is asymmetrical with respect to the coil center point. Both coils include four turns, with r.f. excitation being applied to the turn that is closest to the coil center point. The turn that is third farthest from the center point is asymmetric in the coil used for 200 mm wafers. The two turns closest to the coil center point are asymmetric in the coil used for 300 mm wafers.
Abstract:
A semiconductor manufacturing process wherein an organic antireflective coating is etched with an O2-free sulfur containing gas which provides selectivity with respect to an underlying layer and/or minimizes the lateral etch rate of an overlying photoresist to maintain critical dimensions defined by the photoresist. The etchant gas can include SO2 and a carrier gas such as Ar or He and optional additions of other gases such as HBr. The process is useful for etching 0.25 micron and smaller contact or via openings in forming structures such as damascene structures.